8294 J. Phys. Chem., Vol. 100, No. 20, 1996
Crestoni et al.
(7) (a) Cacace, F. Acc. Chem. Res. 1988, 21, 215. (b) Speranza, M.
Mass Spectrom. ReV. 1992, 11, 73. (c) Speranza, M. Int. J. Mass Spectrom.
Ion Proc. 1992, 118/119, 395.
(29) (a) Biermann, H. W.; Freeman, W. P.; Morton, T. H. J. Am. Chem.
Soc. 1982, 104, 2307. (b) Hall, D. G.; Morton, T. H. J. Am. Chem. Soc.
1980, 102, 5688. (c) Morton, T. H. J. Am. Chem. Soc. 1980, 102, 1596.
+
(8) (a) Angelini, G.; Speranza, M. J. Am. Chem. Soc. 1981, 103, 3800.
(b) DePetris, G.; Giacomello, P.; Picotti, T.; Pizzabiocca, A.; Renzi, G.;
Speranza, M. J. Am. Chem. Soc. 1986, 108, 7491. (c) Fornarini, S.;
Sparapani, C.; Speranza, M. J. Am. Chem. Soc. 1988, 110, 34. (d) Ibid.
1988, 110, 42. (e) DePetris, G.; Giacomello, P.; Pizzabiocca, A.; Renzi,
G.; Speranza, M. J. Am. Chem. Soc. 1988, 110, 1098. (f) Cecchi, P.;
Cipollini, R.; Pizzabiocca, A.; Renzi, G.; Speranza, M. Tetrahedron 1988,
44, 4847. (g) Fornarini, S.; Muraglia, V. J. Am. Chem. Soc. 1989, 111,
873. See also ref 19a.
(9) (a) Shiner, Jr., V. J.; Imhoff, M. A. J. Am. Chem. Soc. 1985, 107,
2121. (b) Shiner, Jr., V. J.; Tai, J. J. J. Am. Chem. Soc. 1981, 103, 436. (c)
Imhoff, M. A.; Ragain, R. M.; Moore, K.; Shiner, Jr., V. J. J. Org. Chem.
1991, 56, 3542.
(30) In Figure 2, the association enthalpy of any C7H13 ion with a
propane molecule is taken as equal to that measured for s-C3H7+ (13.6 kcal
mol-1).23 The ligand exchange leading to [s-C3H7+•1H] + C3H8 is estimated
to release ca. 13 kcal mol-1, namely, the difference between the association
+
enthalpies of s-C3H7 with 1H (ca. 26.4 kcal mol-1) (see text) and with
23
propane (13.6 kcal mol-1
)
In Figure 3, the association enthalpy of any
C7H13+ isomer with an isobutane molecule is taken as equal to that measured
for t-C4H9+ (7.2 kcal mol-1 23 The ligand exchange leading to [t-C4H9+•1H]
)
+ i-C4H10 is estimated to release ca. 3 kcal mol-1, namely, the difference
between the association enthalpies of t-C4H9+ with 1H (ca. 10 kcal mol-1
,
see text) and with isobutane (7.2 kcal mol-1).23
(31) Quoted in ref 75 of Hehre, W. J.; Radom, L.; Schleyer; P. v. R.;
Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986;
p 395.
(32) (a) Saunders, M.; Kates, M. R. J. Am. Chem. Soc. 1978, 100, 7082.
(b) Frenking, G. Tetrahedron 1984, 40, 377. (c) Saunders, M.; Vogel, P.;
Hagen, E. L.; Rosenfeld, J. Acc. Chem. Res. 1973, 6, 53. (d) Myhre, P. C.;
Yannoni, C. S. J. Am. Chem. Soc. 1981, 103, 230.
(33) Solomon, J. J.; Meot-Ner, M.; Field, F. H. J. Am. Chem. Soc. 1974,
96, 3727.
(34) See ref 7b and references therein.
(10) Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am. Chem.
Soc. 1973, 95, 3662.
(11) Bulgrin, V. C.; Dahlgren, G. J. Am. Chem. Soc. 1958, 80, 3883.
(12) Brown, H. C.; Deck, H. R. J. Am. Chem. Soc. 1965, 87, 5620.
(13) Brown, H. C.; Hess, H. M. J. Org. Chem. 1969, 34, 2206.
(14) Caravatti, P.; Alleman, M. Org. Mass Spectrom. 1991, 26, 514.
(15) de Koning, L. J.; Fokkens, R. H.; Pinkse, F. A.; Nibbering, N. M.
M. Int. J. Mass Spectrom. Ion Proc. 1987, 77, 95.
(16) Bartmess, J. E. Vacuum 1983, 33, 149.
(17) (a) Langevin, P. Ann. Chim. Phys. Ser. 8 1905, 5, 245. (b) Su, T.;
Chesnavitch, W. J. J. Chem. Phys. 1982, 76, 5183.
(35) If the volume V of the electrostatically bonded [s-C3D7+•1H] is
taken as that of a sphere of 10 Å in diameter (V ) ca. 4 × 10-21 cm3), the
concentration C of 1H in [sC3D7+•1H] and, thus, of C3D7H in the
conceivable [C3D7H•IV] adduct would amount to ca. 2 × 1020 molecules
cm-3. The constant ()k1/k-1) of the hypothetical [s-C3D7+•1H] T
[C3D7H•IV] equilibrium can be approximately estimated as large as ca. 0.2
from the ∆H° ) +1 kcal mol-1, if differential entropy contributions can
be neglected. The first-order k1 constant ranges around 2 × 1011 s-1, if
10-9 cm3 molecule-1 s-1 is taken for the corresponding second-order
constant (see the present FT-ICR kinetic results; see also ref 25). It follows
that the first-order rate constant k-1 ) ca. 5k1 ) ca. 1012 s-1. Even
considering a pronounced deuterium isotope effect, extensive [C3D7H•IV]
(18) (a) Ausloos, P.; Lias, S. G.; Gorden, Jr., R. J. Chem. Phys. 1963,
39, 3341. (b) Ausloos, P. Ion-Molecule Reactions; Franklin, J. L., Ed.;
Plenum: New York, 1970. (c) Ausloos, P.; Lias, S. G. J. Chem. Phys. 1962,
36, 3163. (d) Lias, S. G.; Ausloos, P. J. Chem. Phys. 1962, 37, 877. (e)
Sandoval, I. B.; Ausloos, P. J. Chem. Phys. 1963, 38, 452. (f) Freeman, G.
R. Radiat. Res. ReV. 1968, 1, 1. (g) Ausloos, P. Progr. React. Kinet. 1969,
5, 113. (h) Ausloos, P.; Lias, S. G. J. Chem. Phys. 1965, 43, 2748. (i)
Ausloos, P.; Lias, S. G. J. Am. Chem. Soc. 1970, 92, 5037. (j) Rebbert, R.
E.; Ausloos, P. J. Res. Natl. Bur. Stand., Sect. A 1972, 76, 329. (k) Lias, S.
G.; Rebbert, R. E.; Ausloos, P. J. Chem. Phys. 1972, 57, 2080.
(19) (a) Kim, J. K.; Findlay, M. C.; Henderson, W. G.; Caserio, M. C.
J. Am. Chem. Soc. 1973, 95, 2184. (b) Jardine, I.; Fenselau, C. J. Am. Chem.
Soc. 1976, 98, 5086. (c) Luczynski, Z.; Herman, J. A. J. Phys. Chem. 1978,
82, 1679. (d) Sen Sharma, D. K.; Kebarle, P. J. Am. Chem. Soc. 1978, 100,
5826. (e) Richter, W. J.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1978,
17, 424.
(20) (a) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1. (b)
Stull, D. R.; Westrum, Jr., E. F.; Sinke, G. C. The Chemical Thermodynamics
of Organic Compounds; Wiley: New York, 1969.
(21) Hiraoka, K.; Kebarle, P. J. Am. Chem. Soc. 1975, 97, 4179.
(22) Hiraoka, K.; Mori, T.; Yamabe, S. Chem. Phys. Lett. 1993, 207,
178.
•
T [sC3D6H+•1D] T [C3D6H2 IV′] (IV′ ) 2,2-dimethyl-1-D-cyclopentyl
cation) interchange is expected to occur prior to stepwise intracluster
conversion of IV (or IV′) to V.
(36) Isomeric 1,2-dimethylcyclopentanols and 1-methylcyclohexanol
display the same mass spectroscopic fragmentation pattern. It is characterized
by a distribution of fragment ions paralleling that from ethers 2-4, but
shifted by -14 amu (the CH2 moiety). Thus, the [MeC(OMe)dCH2]+
fragment (m/z ) 72) of ethers 2-4 corresponds in the spectra of isomeric
1,2-dimethylcyclopentanols and 1-methylcyclohexanol to a significant m/z
) 58 peak, due to the [MeC(OH)dCH2]+ fragment. A pronounced m/z )
58 peak, but this time due to the [HC(OMe)dCH2]+ fragment, characterizes
the mass spectra of isomers of ethers 2-4, not containing a methyl group
geminal to the MeO moiety, i.e., 2,2-dimethyl-1-methoxycyclopentanols.
(37) The deuterium isotope effect of a nonmigrating CHD moiety in
the γ position, such as the CR′HD one in 1D (third equation of Scheme 2),
in the rate determining formation of a carbocation has been measured to
fall slightly below 1 (ca. 0.98), see ref 9 and Schubert, W. M.; LeFevre, P.
H. J. Am. Chem. Soc. 1969, 91, 7746).
(23) Sunner, J. A.; Hirao, K.; Kebarle, P. J. Phys. Chem. 1989, 93, 4010.
(24) Magnera, T. F.; Kebarle, P. Ionic Processes in the Gas Phase;
Almoster-Ferreira, M. A., Ed.; Plenum: New York, 1984.
(25) Cf. ref 18i and: Lias, S. G.; Eyler, J. R.; Ausloos, P. Int. J. Mass
Spectrom. Ion Phys. 1976, 19, 219.
(38) Schrøder Glad, S.; Jensen, F. J. Am. Chem. Soc. 1994, 116, 9302.
(39) Hartshorn, S. R.; Shiner, Jr., V. J. J. Am. Chem. Soc. 1972, 94,
9002.
(26) Radom, L.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1972,
94, 5935.
(27) Owing to the pronounced Brønsted acidity of CnH5+ (n ) 1, 2),20
occurrence of the relevant ionic intermediates I-VI in the CH4 systems
may as well involve preliminary protonation of 1H followed by H2
elimination from the protonated form.
(40) The CR-H bond dissociation energy (D°(CR-H)) of 1,1-dimeth-
ylcyclopentane is unknown. If cyclopentane can be regarded as a suitable
model of 1,1-dimethylcyclopentane, its D°(CR-H) can be estimated as large
as 94.8 kcal mol-1. The D°(t-Bu-H) is 95.2 kcal mol-1, while D°(i-Pr-
H) is 99.4 kcal mol-1 20
.
(28) The hypothesis of complete III T II rearrangement before their
trapping by MeOH is rather unlikely owing to the pronounced energy barrier
associated to the III f II ring-expansion process (15 kcal mol-1) ( Kirchen,
R. P.; Sorensen, T. S.; Wagstaff, K. M. J. Am. Chem. Soc. 1978, 100, 5134.
Viruela-Martin, P. M.; Nebot-Gil, I.; Viruela-Martin, R.; Planelles, J. J.
Chem. Soc., Perkin Trans. 2 1987, 307.
(41) (a) Streitwieser, Jr., A.; Jagow, R. H.; Fahey, R. C.; Suzuki, S. J.
Am. Chem. Soc. 1958, 80, 2326. (b) Scheppele, S. E. Chem. ReV. 1972, 72,
511.
JP952728L