RSC Advances
Paper
small-sized aggregates with hydrodynamic diameter in the 8–
7 S. I. Stupp and L. C. Palmer, Chem. Mater., 2014, 26, 507–518.
8 J. Shi, Z. Xiao, N. Kamaly and O. C. Farokhzad, Acc. Chem.
Res., 2011, 44, 1123–1134.
9 B. Y. Wang, H. Xu and X. Zhang, Adv. Mater., 2009, 21, 2849–
2864.
1
1 nm range and form aggregates at low concentration of the
ꢀ
4
ꢀ6
order of 10 to 10 M. The TEM study of amphiphile also
conrmed the formation of aggregates in nm range. For eval-
uating the encapsulation potential, Nile red was used as
a model dye and nimodipine as a model drug. Among the 10 D. A. LaVan, T. McGuire and R. Langer, Nat. Biotechnol.,
amphiphiles 15–18, compound 16 having C-15 alkyl chain and 2003, 21, 1184–1191.
mPEG-550 moiety has the highest encapsulation potential and 11 H. Otsuka, Y. Nagasaki and K. Kataoka, Adv. Drug Delivery
shows an efficient dye release from the hydrophobic core of the Rev., 2003, 55, 403–419.
amphiphile on exposure to enzyme. On comparison, the 12 R. Haag and F. Kratz, Angew. Chem., Int. Ed., 2006, 45, 1198–
transport potential of the amphiphiles synthesized herein from 1215.
diaryloxydiglycerol core were found to be inferior as compared 13 S. Gupta, R. Tyagi, V. S. Parmar, S. K. Sharma and R. Haag,
to the one synthesized earlier using triaryloxytriglycerol core. Polymer, 2012, 53, 3053–3078.
Though an opposite trend was observed for CAC value i.e. the 14 R. Duncan, Nat. Rev. Drug Discovery, 2003, 2, 347–360.
amphiphiles constructed from diaryloxydiglycerol core have 15 R. Satchi-Fainaro, R. Duncan and C. M. Barnes, Adv. Polym.
lower CAC value as compared to triaryloxytriglycerol core.
Cytotoxicity prole was also obtained by using HeLa cancer cell 16 S. Prasad, K. Achazi, B. Schade, R. Haag and S. K. Sharma,
lines, which showed that the synthesized amphiphiles are Eur. Polym. J., 2018, 109, 506–522.
Sci., 2006, 193, 1–65.
relevant as drug delivery system. Furthermore, the stimuli 17 A. Sharma and A. Kakkar, Molecules, 2015, 20, 16987–17015.
responsive release of the encapsulated guest from the hydro- 18 J. Khandare, M. Calder ´o n, N. M. Dagia and R. Haag, Chem.
phobic core of amphiphilic aggregates using immobilized
Candida antarctica lipase (Novozym 435) at 37 C was also 19 R. A. Shirwaiker, M. F. Purser and R. A. Wysk, in Rapid
Soc. Rev., 2012, 41, 2824–2848.
ꢁ
investigated. The present data testify the potential of these
newer amphiphiles for the design and development of efficient
nanocarriers for biomedical applications.
Prototyping of Biomaterials: Principles and Applications, ed.
R. Narayan, Woodhead Publishing, 2014, ch. 6, pp. 176–200.
20 F. S. T. Mirakabad, K. Nejati-Koshki, A. Akbarzadeh,
M. R. Yamchi, M. Milani, N. Zarghami, V. Zeighamian,
A. Rahimzadeh, S. Alimohammadi, Y. Hanifehpour and
S. W. Joo, Asian Pac. J. Cancer Prev., 2014, 15(2), 517–535.
21 H. Lv, S. Zhang, B. Wang, S. Cui and J. Yan, J. Controlled
Release, 2006, 114, 100–109.
Conflicts of interest
There are no conicts to declare.
2
2 R. S. G. Krishnan, S. Thennarasu and A. B. Mandal, J. Phys.
Chem. B, 2004, 108, 8806–8816.
Acknowledgements
The authors gratefully acknowledge the nancial support from 23 B. Trappmann, K. Ludwig, M. R. Radowski, A. Shukla,
DST, Government of India, and DFG, Germany for supporting
a collaboration research project (Grant No. INT/FRG/DFG/P-03/
A. Mohr, H. Rehage, C. B ¨o ttcher and R. Haag, J. Am. Chem.
Soc., 2010, 132, 11119–11124.
2017). The authors would like to thank Elisa Quaas for per- 24 K. Urata, Eur. J. Lipid Sci. Technol., 2003, 105, 542–556.
forming cell viability experiments. The authors would also like 25 M. O. Sonnati, S. Amigoni, E. P. Taffin de Givenchy,
to acknowledge CSIR-UGC, New Delhi for providing fellowships
to Parmanand, Aarti and Ayushi Mittal and the assistance of the
Core Facility BioSupraMol supported by the DFG.
T. Darmanin, O. Chouletb and F. Guittard, Green Chem.,
2013, 15, 283–306.
26 H. Baumann, M. B u¨ hler, H. Fochem, F. Hirsinger,
H. Zoebelein and J. Falbe, Angew. Chem., Int. Ed. Engl.,
1
988, 27, 41–62.
References
2
7 A. K. Singh, R. Nguyen, N. Galy, R. Haag, S. K. Sharma and
1
C. Branden and J. Tooze, Introduction to protein structure,
Garland Publishing Inc., New York, 2nd edn, 1999.
C. Len, Molecules, 2016, 21, 1038–1049.
28 P. Cintas, S. Tagliapietra, E. C. Gaudino, G. Palmisano and
2
V. Percec, A. E. Dulcey, V. S. K. Balagurusamy, Y. Miura,
G. Cravotto, Green Chem., 2014, 16, 1056–1065.
J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, 29 B. Parshad, P. Yadav, Y. Kerkhoff, A. Mittal, K. Achazi,
S. D. Hudson, P. A. Heiney, H. Duan, S. N. Magonov and
R. Haag and S. K. Sharma, New J. Chem., 2019, 43, 11984–
S. A. Vinogradov, Nature, 2004, 430, 764–768.
11993.
3
4
5
6
M. A. Alam, Y. S. Kim, S. Ogawa, A. Tsuda, N. Ishii and 30 B. Parshad, M. Kumari, K. Achazi, C. B ¨o ttcher, R. Haag and
T. Aida, Angew. Chem., Int. Ed., 2008, 47, 2070–2073.
S. K. Sharma, Polymers, 2016, 8, 311–325.
J. D. Badji ´c , A. Nelson, S. J. Cantrill, W. B. Turnbull and 31 S. Gupta, B. Schade, S. Kumar, C. B ¨o ttcher, S. K. Sharma and
J. F. Stoddart, Acc. Chem. Res., 2005, 38, 723–732. R. Haag, Small, 2013, 9, 894–904.
M. Lee, B. K. Cho and W. C. Zin, Chem. Rev., 2001, 101, 3869– 32 M. Kumari, A. K. Singh, S. Kumar, S. Gupta, K. Achazi,
3892.
R. Haag and S. K. Sharma, Polym. Adv. Technol., 2014, 25,
1208–1215.
J. A. A. W. Elemans, A. E. Rowan and R. J. M. Nolte, J. Mater.
Chem., 2003, 13, 2661–2670.
37562 | RSC Adv., 2020, 10, 37555–37563
This journal is © The Royal Society of Chemistry 2020