Journal of the American Chemical Society
Page 4 of 5
Baskakov, I. V; Legname, G.; Baldwin, M. A.; Prusiner, S. B.; Cohen, F.
self-assembly. The explanation for this kinetic trapping is the
mass transfer limitation of Be from the solid state network of the
gel, resulting in limited concentration and low reactivity in solu-
tion (see S.I. for details). Indeed, increasing the pH of a gel made
using method 3 above a pH 6.6 to resolubilise the compounds
results in Be reacting further to generate Ce in solution (without
any further addition of II). Again lowering the pH below the ap-
parent pKa of Ce results in a Ce gel. This gel cannot be converted
back to a Be gel without extensive chemical isolation (i.e. theoret-
ical breaking of covalent bonds between Ie and II and isolation of
individual species). Isolated Be is indeed capable of forming gels
through the pH triggered mechanism as indicated by the rheology,
morphology and appearance of the gels made from dissolving
isolated pure Be at pH 8 and lowering the pH. The CGCs of Be
from both methodologies were identical at 0.3 % by weight. Un-
like Ce, when Be is added to a high pH water solution no gelation
occurs and a clear coloured solution results, indicative of a soluble
deprotonated species.
E. J. Biol. Chem. 2002, 277, 21140. (j) Misra, N.; Lees, D.; Zhang, T.;
Schwartz, R. Comput. Math. Methods Med. 2008, 9, 277. (k) Kumar, M.;
Brocorens, P.; Tonnelé, C.; Beljonne, D.; Surin, M.; George, S. J. Nat.
Commun. 2014, 5, 5793. (l) Tidhar Y., Weissman H., Wolf S. G., Gulino
A., Rybtchinski B. Chem. Eur. J. 2011, 17, 6068.
1
2
3
4
5
6
7
8
(2)
(a) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104,
1201. (b) Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. (c) Weiss,
R. G. J. Am. Chem. Soc. 2014, 136, 7519.
(3)
(a) Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K.
Angew. Chem. Int. Ed. 2008, 47, 8002. (b) Foster, J. A.; Piepenbrock, M.-
O. M.; Lloyd, G. O.; Clarke, N.; Howard, J. A. K.; Steed, J. W. Nature
Chem. 2010, 2, 1037.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4)
(a) Sreenivasachary, N.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.
S. A. 2005, 102, 5938. (b) Ossipov, D. A.; Yang, X.; Varghese, O.;
Kootala, S.; Hilborn, J. Chem. Commun. 2010, 46, 8368. (c) Lloyd, G. O.;
Steed, J. W. Nature Chem. 2009, 1, 437. (d) Yang, Z.; Gu, H.; Fu, D.;
Gao, P.; Lam, J. K.; Xu, B. Adv. Mater. 2004, 16, 1440. (e) Columb-
Delsuc, M.; Mattia, E.; Sadownik, J. W.; Otto, S. Nat. Commun. 2015,
6:7427. (f) Li, J.; Carnall, J. M. A.; Stuart, M. C. A.; Otto, S. Angew.
Chem. Int. Ed. 2011, 50, 8384. (g) Sadownik, J. W., Ulijn, R. V. Chem.
Commun. 2010, 46, 3481.
In conclusion by coupling two chemical reactivities (hydrazone
bond formation and tautomerisation) to the self-assembly of su-
pramolecular gels we have shown that engineered reaction path-
ways within a gelation landscape can be created. We have de-
scribed the intended production of a number of gel materials start-
ing from one initial solution mixture, depending on kinetic and
thermodynamic control over reactions. Further studies are under
way to determine the gels drug delivery propensity.14 We hope
this connectivity hypothesis between chemical reactivity and self-
assembly will lead to new pathway complexity studies in a variety
of research fields were multi-step reactivity can be introduced.
(5)
(a) Hirst, A. R.; Roy, S.; Arora, M.; Das, A. K.; Hodson, N.;
Murray, P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; van Esch, J.
H.; Santabarbara, S.; Hunt, N. T.; Ulijn, R. V. Nature Chem. 2010, 2,
1089. (b) Boekhoven, J.; Poolman, J. M.; Maity, C.; Li, F.; van der Mee,
L.; Minkenberg, C. B.; Mendes, E.; van Esch, J. H.; Eelkema, R. Nature
Chem. 2013, 5, 433. (c) Shi, J.; Du, X.; Huang, Y.; Zhou, J.; Yuan, D.;
Wu, D.; Zhang, Y.; Haburcak, R.; Epstein, I. R.; Xu, B. J. Am. Chem. Soc.
2015, 137, 26. (d) Maity, C.; Hendriksen, W. E.; van Esch, J. H.; Eelkema,
R. Angew. Chem. Int. Ed. 2015, 54, 998. (e) Olive, A. G. L.; Abdullah, N.
H.; Ziemecka, I.; Mendes, E.; Eelkema, R.; van Esch, J. H. Angew. Chem.
Int. Ed. 2014, 53, 4132. (f) Nalluri, S. K. M.; Berdugo, C.; Javid, N.;
Frederix, P. W. J. M.; Ulijn, R. V. Angew. Chem. Int. Ed. 2014, 53, 5882.
(6)
(a) Smith, M. M.; Edwards, W.; Smith, D. K. Chem. Sci. 2013,
ASSOCIATED CONTENT
Supporting Information
4, 671. (b) Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.;
Campopiano, D. J.; Greaney, M. F. Nature Chem. 2010, 2, 490. (c)
Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem.
Soc. 2006, 128, 15602. (d) Levrand, B.; Ruff, Y.; Lehn, J.-M.; Herrmann,
A. Chem. Commun. 2006, No. 28, 2965. (e) Kool, E. T.; Park, D.-H.;
Crisalli, P. J. Am. Chem. Soc. 2013, 135, 17663. (f) Belowich, M. E.;
Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 2003.
Supporting information includes chemical synthesis and analysis,
rheology, electron microscopy, chemical kinetics analysis, crystal-
lography (SuperFlip and CRYSTALS)15 and computational work.
This material is available free of charge via the Internet at
(7)
(a) Ramström, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn, J.-
M. Chemistry 2004, 10, 1711. (b) Crisalli, P.; Kool, E. T. Org. Lett. 2013,
15, 1646. (c) Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184. (d)
Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.; Campopiano, D. J.;
Greaney, M. F. Nature Chem. 2010, 2, 490. (e) Dirksen, A.; Dirksen, S.;
Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.
AUTHOR INFORMATION
Corresponding Author
(8)
Adams, D. J.; Butler, M. F.; Frith, W. J.; Kirkland, M.; Mullen,
L.; Sanderson, P. Soft Matter 2009, 5, 1856.
(9)
Notes
(a)Yelamaggad, C. V; Achalkumar, A. S.; Shankar Rao, D. S.;
Prasad, S. K. J. Am. Chem. Soc. 2004, 126, 6506. (b) Chong, J. H.; Sauer,
M.; Patrick, B. O.; MacLachlan, M. J. Org. Lett. 2003, 5, 3823. (c)
Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V; Heine, T.;
Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524. (d) Plaul, D.; Plass, W.
Inorganica Chim. Acta 2011, 374, 341. (e) Riddle, J. A.; Lathrop, S. P.;
Bollinger, J. C.; Lee, D. J. Am. Chem. Soc. 2006, 128, 10986. (f)
Jędrzejewska, H.; Wierzbicki, M.; Cmoch, P.; Rissanen, K.; Szumna, A.
Angew. Chem. Int. Ed. 2014, 53, 13760.
(10)
G. J. Chem. Soc. Perkin Trans. 2 1985, 11, 1711.
(11) Howe, R. C. T.; Smalley, A. P.; Guttenplan, A. P. M.; Doggett,
M. W. R.; Eddleston, M. D.; Tan, J. C.; Lloyd, G. O. Chem. Commun.
2013, 49, 4268.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
GOL, JSF thank Heriot-Watt University, the Royal Society of
Edinburgh/Scottish Government Fellowship (GOL) and the Scot-
tish Funding Council Exchange Scheme (GOL) for funding. GOL
and HM thank the Scottish Crucible for the project award “Cus-
tom Bubbles”.
Carey, A. R. E.; Fukata, G.; O’Ferrall, R. A. M.; Murphy, M.
REFERENCES
(1)
(a) Korevaar, P. a.; George, S. J.; Markvoort, A. J.; Smulders,
(12)
nunto, T. W. J. Am. Chem. Soc. 1990, 112, 8414.
(13) Byrne, P.; Turner, D. R.; Lloyd, G. O.; Clarke, N.; Steed, J. W.
Cryst. Growth Des. 2008, 8, 3335.
Etter, M. C.; Urbancyzk-Lipkowska, Z.; Zia-Ebrahimi, M.; Pa-
M. M. J.; Hilbers, P. a. J.; Schenning, A. P. H. J.; De Greef, T. F. a.;
Meijer, E. W. Nature 2012, 481, 492. (b) Korevaar, P. a.; Newcomb, C. J.;
Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 8540. (c)
Raeburn, J.; Zamith Cardoso, A.; Adams, D. J. Chem. Soc. Rev. 2013, 42,
5143. (d) Cardoso, A. Z.; Alvarez Alvarez, A. E.; Cattoz, B. N.; Griffiths,
P. C.; King, S. M.; Frith, W. J.; Adams, D. J. Faraday Discuss. 2013, 166,
101. (e) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.;
McLeish, T. C.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U. S. A.
2001, 98, 11857. (f) Van Bommel, K. J. C.; Stuart, M. C. A.; Feringa, B.
L.; van Esch, J. Org. Biomol. Chem. 2005, 3, 2917. (g) Qiu, H.; Hudson,
Z. M.; Winnik, M. A.; Manners, I. Science 2015, 347, 1329. (h) Korevaar,
P. A.; de Greef, T. F. A.; Meijer, E. W. Chem. Mater. 2014, 26, 576. (i)
(14)
(a) Van Bommel, K. J. C.; Stuart, M. C. A.; Feringa, B. L.;
van Esch, J. Org. Biomol. Chem. 2005, 3, 2917. (b) Roy, R.; Deb, J.; Jana,
S. S.; Dastidar, P. Chem. Eur. J. 2014, 20, 15320.
(15)
Parois, P.; Cooper, R. I.; Thompson, A. L. Chem. Cent. 2003, 9, 30. (c)
Flack, H. D. Acta Cryst. 1983, A39, 876. (d) Cooper, R. I.; Thompson, A.
L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100. (e) Thompson, A. L.
Watkin, D. J. J. Appl. Cryst. 2011, 44, 1017.
(a) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786. (b)
ACS Paragon Plus Environment