Journal of the American Chemical Society
Page 4 of 5
We then applied this system to the reductive
Notes
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
defluoroalkylation of other electron-deficient Ar–CF3
systems, using 3-buten-1-ol as the coupling partner.
Bis(trifluoromethyl)benzenes are good substrates in this
process, regardless of the relative locations of the CF3
groups (19 and 20 were both formed in 80% yield).
Evaluation of a small series of 5-substituted 1,3-
bis(trifluoromethyl)benzene substrates indicated that this
aromatic scaffold could be altered without significant
loss of chemical efficiency (21–23: 60–89% yield).
Trifluoromethylaromatics that bear nonfluorinated
electron-withdrawing groups also undergo regioselective
olefin addition to give the diethylarylphosphonate 24
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This project was supported by funds from Emory Universi-
ty and Winship Cancer Institute. We thank Brooke Andrews
(
Emory) for experimental assistance. This material is based
upon work supported by the National Science Foundation
under CHE (MRI)-1531620.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
REFERENCES
(1)
Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem. Int. Ed.
2013, 52, 3328.
(2)
Unzner, T. A.; Magauer, T. Tetrahedron Lett. 2015, 56, 877.
Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
Arora, A.; Weaver, J. D. Acc. Chem. Res. 2016, 49, 2273.
Lund, H.; Jensen, N. Acta Chem. Scand., Ser. B 1974, 28, 263.
Yamauchi, Y.; Fukuhara, T.; Hara, S.; Senboku, H. Synlett
(
56% yield), morpholine amide 25 (39% yield) or
sulfonamides 26–28 (52–83% yield).
(
(
3)
4)
A main limitation of this process lies in the requisite
electronic properties of the trifluoromethylaromatic.
Aryl substrates that have stronger electron-withdrawing
groups (e.g. alkyl esters) undergo alkene coupling along
with further reduction to give the corresponding
alkylaromatics. On the other hand, Aryl substrates
devoid of additional activating elements are poorly
reactive under standard conditions. However, use of the
more highly-reducing photoredox catalyst N-(1-
(5)
(6)
2
008, 428.
(7)
Munoz, S. B.; Ni, C.; Zhang, Z.; Wang, F.; Shao, N.; Mathew,
T.; Olah, G. A.; Prakash, G. K. S. Eur. J. Org. Chem. 2017,
2
017, 2322.
Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. Org. Lett.
007, 9, 1497.
Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. J. Org. Chem.
001, 66, 7216.
(8)
2
(9)
2
(10)
Whittlesey, M. K.; Peris, E. ACS Catal. 2014, 4, 3152.
Scott, V. J.; Çelenligil-Çetin, R.; Ozerov, O. V. J. Am. Chem.
Soc. 2005, 127, 2852.
Wu, J.; Cao, S. ChemCatChem 2011, 3, 1582.
Dang, H.; Whittaker, A. M.; Lalic, G. Chem. Sci. 2016, 7, 505.
Forster, F.; Metsänen, T. T.; Irran, E.; Hrobárik, P.; Oestreich,
M. J. Am. Chem. Soc. 2017, 139, 16334.
Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3,
1578.
Radom, L.; Hehre, W. J.; Pople, J. A. J. Am. Chem. Soc. 1971,
(11)
33
naphthyl)phenothiazine (E = –2.23 V vs. SCE) enabled
formation of products 29–31, albeit in diminished yields.
Finally, the antiemetic drug, Aprepitant, could be
effectively functionalized using this protocol, directly
delivering 32 in 85% yield without affecting the other
functional groups in the molecule.
(12)
(13)
(
14)
(15)
16)
(
In summary, we have described a catalytic system that
accomplishes selective cleavage of a single C–F bond in
trifluoromethylaromatic substrates. We demonstrate that
this approach delivers novel radical intermediates and
that these intermediates effectively couple with a broad
collection of unactivated alkene subtypes. These
conditions are mild, tolerant of many valuable functional
groups, and provide the desired products with complete
selectivity for the linear isomers. This protocol, driven
by the action of two organic small molecule catalysts,
can be employed in the activation of different
trifluoromethyl aromatic substructures. Mechanistic
studies and the application of this strategy to the
synthesis of other high value product classes are
currently underway in our laboratory.
9
3, 289.
(17)
(18)
(19)
(20)
Saboureau, C.; Troupel, M.; Sibille, S.; Périchon, J. J. Chem.
Soc., Chem. Commun. 1989, 1138.
Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T. Angew. Chem.
Int. Ed. 2016, 55, 10406.
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2
013, 113, 5322.
Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
After the submission of this manuscript, a related photoredox
system for Ar–CF3 activation was reported by König and
Gschwind. See: Chen, K.; Berg, N.; Gschwind, R.; König, B. J.
Am. Chem. Soc. 2017, DOI: 10.1021/jacs.7b10755.
Middleton, W. J.; Bingham, M. J. Org. Chem. 1980, 45, 2883.
Xia, J. B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135,
17494.
Douglas, J. J.; Albright, H.; Sevrin, M. J.; Cole, K. P.;
Stephenson, C. R. J. Angew. Chem. Int. Ed. 2015, 54, 14898.
Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.;
Shabat, D.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 3949.
Xiao, Y. L.; Min, Q. Q.; Xu, C.; Wang, R. W.; Zhang, X.
Angew. Chem. Int. Ed. 2016, 55, 5837.
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
O’Hara, F.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc.
ASSOCIATED CONTENT
2
013, 135, 12122.
Discekici, E. H.; Treat, N. J.; Poelma, S. O.; Mattson, K. M.;
Hudson, Z. M.; Luo, Y.; Hawker, C. J.; de Alaniz, J. R. Chem.
Commun. 2015, 51, 11705.
Clavel, P.; Lessene, G.; Biran, C.; Bordeau, M.; Roques, N.;
Trévin, S.; de Montauzon, D. J. Fluor. Chem. 2001, 107, 301.
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
Supporting Information.
Experimental procedures and spectral data are available
free of charge on the ACS Publications website.
(29)
(30)
(
(
31)
32)
Denisov, E. T.; Tumanov, V. E. Russ. Chem. Rev. 2005, 74, 825.
Loeff, I.; Goldstein, S.; Treinin, A.; Linschitz, H. J. Phys. Chem.
AUTHOR INFORMATION
1
991, 95, 4423.
Corresponding Author
(33)
Pan, X.; Fang, C.; Fantin, M.; Malhotra, N.; So, W. Y.; Peteanu,
L. A.; Isse, A. A.; Gennaro, A.; Liu, P.; Matyjaszewski, K. J.
Am. Chem. Soc. 2016, 138, 2411.
ACS Paragon Plus Environment