Please do not adjust margins
New Journal of Chemistry
Page 7 of 8
DOI: 10.1039/C7NJ03904B
Journal Name
ARTICLE
In addition, there is currently a consensus in the literature that
Fischer–Tropsch synthesis proceeds on cobalt metal particles.
1
2
3
J. Kopyscinski, T. J. Schildhauer and S. M. A. Biollaz, Fuel,
010, 89, 1763-1783.
M. Gassnera and F. Maréchal, Energy Environ. Sci., 2012,
768-5789.
V. M. Lebarbier, R. A. Dagle, L. Kovarik, K. O. Albrecht, X. Li, L.
Li, C. E. Taylor, X. Bao and Y. Wang, Appl. Catal. B:Environ.,
2014, 144, 223-232.
M. Chen, J. Zhou, J. Zhang, J. Zhang, Z. Chen, J. Ding, F. Kong,
G. Qian and J. Chen, Appl. Catal. A:Gen., 2017, 534, 94-100.
H. L. Yong, D. W. Lee, H. Kim, H. S. Choi and K. Y. Lee, Fuel,
2
1
0, 20
5,
Therefore, the interaction between Ni and Co might
improve the adsorption and activation of CO and thus enhance
the methanation activity of the Ni3-xCo catalysts. The
5
x 4
O
formation of C2+ hydrocarbons is suppressed for nickel-based
catalysts, therefore the heating value of the product gas is
9
considerably low for nickel-based catalysts. But Co-based
4
5
6
7
8
9
1
1
1
catalysts are generally more selective to linear longchain
2
2
015, 159, 259-268.
J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong and F. Su, Rsc Adv.,
2015, , 22759-22776.
5, 26
hydrocarbons.
In consequence, the synergetic effect of Ni
and Co tunes the product selectivity, and thus controlling the
heating value of the product. The nanorods directly grown on
the Ni foam can ensure efficient anchoring of the nanorods
and prevent leaching during catalytic reactions. Furthermore,
the spaces between neighboring nanorods are much larger,
which allows for easy gas diffusion and mass transport,
resulting in a high utilization of materials.
5
T. A. Le, M. S. Kim, S. H. Lee, T. W. Kim and E. D. Park, Catal.
Today, 2017, 293, 89-96.
H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W.
Zhang and X. Chen, Fuel, 2016, 183, 335-344.
C. Cheng, D. Shen, R. Xiao and C. Wu, Fuel, 2017, 189, 419-
427.
0 A. Y. Khodakov, W. Chu and P. Fongarland, Chem. Rev., 2007,
07, 1692-1744.
1
1 T. Inui, A. Sakamoto, T. Takeguchi and Y. Ishigaki, Ind. Eng.
Chem. Res., 1989, 28, 427-431.
2 S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz,
Conclusions
J. Lefebvre, P. Prabhakaran and S. Bajohr, Fuel, 2016, 166
2
,
x 4
In summary, the Ni3-xCo O nanorods with different Ni/Co ratio
76-296.
3 J. A. Moulijn, M. T. Kreutzer, T. A. Nijhuis and F. Kapteijn, Adv.
Catal., 2011, 54, 249-327.
have been fabricated on Ni foam by a controllable process
involving the hydrothermal growth and calcinations of
1
x 4
precursor. The Ni3-xCo O
nanorods show different catalytic 14 R. J. Farrauto, Y. Liu, W. Ruettinger, O. Ilinich, L. Shore and T.
Giroux, Catal. Rev., 2007, 49, 141-196.
activity and selectivity in the syngas methanation reaction. It
can be found that the selectivity to methane increase at higher
1
1
5 Y. Li, Q. Zhang, R. Chai, G. Zhao, Y. Liu and Y. Lu,
Chemcatchem, 2015, 7, 1427-1431.
CO conversion levels for Ni1.5Co1.5
4 2 4
O nanorods. The Ni CoO
6 Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, L. Ye and L. Yong,
Appl. Catal. A: Gen., 2016, 510, 216-226.
heating value of product at 400 °C, which were 97.9% and 50.0 17 S. Liu, L. Hu, X. Xu, A. A. Al‐Ghamdi and X. Fang, Small,
nanorods showed the highest CO conversion and the suitable
3
2
015, 11, 4267.
8 Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen and G. Shen,
J.Mater. Chem. A, 2013, , 2468-2473.
MJ/Nm . The synergetic effect of Ni and Co tuned the product
selectivity, and thus controlling the heating value of the
product. The present results suggest that specifically designed
1
1
1
9 J. Sun, Y. Li, X. Liu, Q. Yang, J. Liu, X. Sun, D. G. Evans and X.
Duan, Chem. Commun., 2012, 48, 3379-3381.
x 4
Ni3-xCo O nanorods with different Ni/Co ratios by controlling
synthesis parameters on Ni foam might bring new 20 J. Sun, S. Zheng, K. Zhang, D. Song, Y. Liu, X. Sun and J. Chen,
J. Mater. Chem. A, 2014, 2, 13116-13122.
opportunities for developing highly efficient catalysts.
2
2
1 M. A. Vannice, J. Catal., 1975, 37, 449-461.
2 S. Hwang, J. Lee, U. G. Hong, J. G. Seo, C. J. Ji, J. K. Dong, H.
Lim, C. Byun and I. K. Song, J. Ind. Eng. Chem., 2011, 17, 154-
1
57.
3 M. Cheng, M. Wen, S. Zhou, Q. Wu and B. Sun, Inorg. Chem.,
012, 51, 1495-1500.
4 X. W. Wei, X. M. Zhou, K. L. Wu and Y. Chen, Crystengcomm,
011, 13, 1328-1332.
Acknowledgements
2
2
2
This work was supported by the National Natural Science
Foundation of China (21503256, 21373254), the autonomous
2
research project of State Key Laboratory of Coal Conversion 25 Q. Zhang, J. Kang and Y. Wang, Chemcatchem, 2010,
SKLCC 2013BWZ004).
1058.
6 Q. Zhang, K. Cheng, J. Kang, W. Deng and Y. Wang,
Chemsuschem, 2014, , 1251-1264.
2, 1030-
(
2
7
Notes and references
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins