Communication
ChemComm
Notes and references
1
2
3
(a) P. Rajdev and S. Ghosh, J. Phys. Chem. B, 2019, 123, 327–342;
b) K. K. Kartha, S. S. Babu, S. Srinivasan and A. Ajayaghosh, J. Am.
Chem. Soc., 2012, 134, 4834–4841.
(a) N. H. Xie, C. Fan, H. Ye, K. Xiong, C. Li and M. Q. Zhu, ACS Appl.
Mater. Interfaces, 2019, 11, 23750–23756; (b) X. Zhang, S. Rehm,
M. M. Safont-Sempere and F. Wurthner, Nat. Chem., 2009, 1, 623–629.
(a) S. Jena, N. P. Damayanti, J. Tan, E. T. Pratt, J. M. K. Irudayaraj
and L. L. Parker, Chem. Commun., 2020, 56, 13409–13412;
(
(
b) Y. L. Wang, C. Li, H. Q. Qu, C. Fan, P. J. Zhao, R. Tian and
M. Q. Zhu, J. Am. Chem. Soc., 2020, 142, 7497–7505.
4
(a) X. L. Zhang, Y. Xiao and X. H. Qian, Angew. Chem., Int. Ed., 2008,
47, 8025–8029; (b) F. H. Chen, A. K. Liu, R. X. Ji, Z. Y. Xu, J. Dong and
Y. Q. Ge, Dyes Pigm., 2019, 165, 212–216.
W. C. Geng, Y. C. Liu, Y. Y. Wang, Z. Xu, Z. Zheng, C. B. Yang and
D. S. Guo, Chem. Commun., 2017, 53, 392–395.
5
6
7
A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc. Rev.,
2008, 37, 109–122.
D. Basak, A. Das and S. Ghosh, RSC Adv., 2014, 4, 43564–43571.
Fig. 7 Maleimide exchange in dynamic Diels–Alder covalent systems in
8 (a) Q. Wang, C. Yu, C. X. Zhang, H. Long, S. Azarnoush, Y. H. Jin and
W. Zhang, Chem. Sci., 2016, 7, 3370–3376; (b) Y. H. Jin, Y. M. Hu,
M. Ortiz, S. F. Huang, Y. Q. Ge and W. Zhang, Chem. Soc. Rev., 2020,
49, 4637–4666.
3
CD CN at 75 1C, where 2 is converted into 1, and a new higher fluores-
cence resonance energy transfer (FRET) efficiency (E = 94.9%) system is
1
constructed. H NMR spectral changes during the conversion of 2 into 1 in
9
(a) D. Loco, R. Spezia, F. Cartier, I. Chataigner and J. P. Piquemal,
Chem. Commun., 2020, 56, 6632–6635; (b) J. Ishihara, F. Usui,
T. Kurose, T. Baba, Y. Kawaguchi, Y. Watanabe and
S. Hatakeyama, Chem. – Eur. J., 2019, 25, 1543–1552.
the dynamic Diels–Alder addition system. [2] = 0.025 M, [carbazole-based
maleimide] = 0.075 M. Reaction time = 0, 3, 6, 9, 12, 24, 36, 48, 72 h from
top to bottom.
1
0
0
2
at
d
5.98–6.02 ppm (Hl ),
d
4.95–4.98 ppm (Hm ),
Chem. – Eur. J., 2020, 26, 11503–11510; (d) S. L. Xiang, Q. X. Hua,
W. L. Gong, N. H. Xie, P. J. Zhao, G. J. Cheng, C. Li and M. Q. Zhu,
ACS Appl. Mater. Interfaces, 2019, 11, 23623–23631.
0
0
0
d 4.02–4.09 ppm (Hn ), and d 2.94–3.06 ppm (Hp and Hq )
gradually decrease. New NMR peaks appear and gradually
increase at d 6.04–6.07 ppm (Hl), d 5.03–5.06 ppm (Hm),
d 4.09–4.16 ppm (Hn), and d 3.06–3.16 ppm (Hp and Hq),
which are assigned to the protons of 1 (Fig. 7). These NMR
1
1
1 (a) X. H. Li, Y. Wang, F. Li and X. Zhang, Dyes Pigm., 2020,
182, 108474; (b) Y. Wang, Q. Zhang, J. B. Gong and X. Zhang, Dyes
Pigm., 2020, 172, 107823.
2 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New
York, 2006. F
the wavelength range l to l + Dl; e
the acceptor; k is the orientation factor, and usually takes the value
D
(l) is area under fluorescence curve of the donor in
experiment results reveal that
2 is converted into 1,
A
is the extinction coefficient of
where triphenylamine- and carbazole-based maleimides are
exchanged. In the dynamic covalent system, of particular
interest is the construction of a new energy transfer system
involving conversion of 2 into 1, where the energy transfer
efficiency increases from 38.9% to 94.9%.
2
of 2/3; Z is the refractive index of the medium.
1
3 Crystallographic data for the model compound: 0.20 ꢁ 0.18 ꢁ
3
0
.12 mm , triclinic, a = 5.3407(11), b = 12.745(3) Å, c = 8.872(4) Å,
3
a = 90.001, b = 92.51(3)1, g = 90.001 and V = 1283.3(4) Å , space group
21, Z = 2, rcalcd = 1.135 g cm , l(MoKa) = 0.71073 Å, T = 113 K,
ꢀ3
P
13 184 reflections, 3160 unique (3160 observed, R(int) = 0.0374),
In summary, we synthesized two new donor–acceptor dyes,
which display efficient intramolecular FRET from carbazole or
triphenylamine donors to dansyl acceptors up to 94.9%. Their
energy transfer can be modulated by reversible formation and
cleavage of dynamic covalent bonds. The two dyes can be
converted each other by maleimide exchanges in the dynamic
covalent system. We demonstrate an unprecedented method to
control energy transfer by using dynamic covalent bonds. The
National Natural Science Foundation of China (grant number
1 2
R = 0.0709, wR = 0.1968, for 276 parameters and 1 restraints. The
single-crystal X-ray diffraction data of the model compound was
deposited in the Cambridge Crystallographic Data Centre (CCDC
2063061†)
21975177 and 21674079) is acknowledged for financial support.
.
Conflicts of interest
1
4 (a) V. Froidevaux, M. Borne, E. Laborbe, R. Auvergne, A. Gandini and
B. Boutevin, RSC Adv., 2015, 5, 37742–37754; (b) C. J. Kloxin and
C. N. Bowman, Chem. Soc. Rev., 2013, 42, 7161–7173.
The authors declare no conflict of interest.
3
278
|
Chem. Commun., 2021, 57, 3275–3278
This journal is © The Royal Society of Chemistry 2021