D. A. Nugiel / Tetrahedron Letters 42 (2001) 3545–3547
3547
1
using 2D H NMR experiments. The preferred exo
(c) Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani,
H. Chem. Lett. 1997, 10, 1039–1040; (d) Minakata, S.;
Ezoe, T.; Nakamura, K.; Ryu, I.; Komastu, M. Tetra-
hedron Lett. 1998, 39, 5205–5208.
orientation seen in the products was determined by
NOE experiments. Irradiating the C-3a proton adjacent
to the indeno carbonyl induces a signal enhancement of
the two protons at C-3 and C-8a. Subsequent sequential
irradiation of the two protons at C-3 and C-8a causes a
signal enhancement of the C-3a proton, indicating all
three protons are on the same face of the indenoisoxa-
zolidine core and confirming the exo product
preference.
3. Nugiel, D. A.; Etzkorn, A. M.; Vidwans, A.; Benfield, P.
A.; Boisclair, M.; Burton, C. R.; Cox, S.; Czerniak, P. M.;
Doleniak, D.; Seitz, S. P. J. Med. Chem. 2001, 44, in press.
4. (a) Baldwin, J. E.; Cha, J. K.; Kruse, La. I. Tetrahedron
1985, 41, 5241–5260; (b) Dagoneau, C.; Denis, J. N.;
Vallee, Y. Synlett 1999, 5, 602–604.
. TLC showed disappearance of the starting aldehyde and
hydroxylamine concurrent with the formation of the
desired nitrone.
5
Indenoisoxazolidine 3 can be further converted to the
corresponding indeonisoxazoline 5 and indenoisoxazole
as shown in Scheme 2. The DMB protecting group
6
6. Analytical data for select compounds: 3a: mp 169–171°C;
1
was removed by treating with TFA in refluxing CH Cl2
H NMR (300 MHz, CDCl ) 10.0 (bs, 1H), 8.5 (d, J=9
2
3
to give the desired product 4 in 86% yield. Alterna-
tively, the DMB group could be removed using an
oxidation protocol. Treating 3c with DDQ gave the
desired indenoisoxazoline 5 in 94% yield. Attempts at
further oxidizing this isoxazoline intermediate directly
to the isoxazole using a variety of oxidants failed. A
two-step protocol proved to work very well. Treating
the isoxazoline 5 with NBS gave the desired brominated
Hz, 1H), 7.7 (t, J=7.5 Hz, 1H), 7.3 (d, J=7.7 Hz, 1H), 7.1
(m, 4H), 6.9 (m, 5H), 5.6 (d, J=6.6 Hz, 1H), 4.1 (m, 1H),
3.9 (d, J=15 Hz, 1H); 3.8 (s, 3H), 3.6 (s, 2H), 2.2 (s, 3H);
HRMS calcd for C H N O (M+H): 429.1814, found:
26
25
2
4
1
429.1823; 3b: mp 173–175°C; H NMR (300 MHz, CDCl )
3
10.0 (bs, 1H), 8.5 (d, J=9 Hz, 1H), 7.7 (t, J=7.5 Hz, 1H),
7.3 (d, J=7.7 Hz, 1H), 7.1 (m, 4H), 6.9 (d, J=9 Hz, 2H),
6.8 (d, J=9 Hz, 2H), 5.6 (d, J=6.6 Hz, 1H), 4.1 (m, 1H),
3.9 (d, J=15 Hz, 1H), 3.8 (2×s, 2×3H), 3.6 (s, 2H), 2.2 (s,
3H); HRMS calcd for C H N O (M+H): 459.1920,
7
intermediate, which was treated directly with KOH in
MeOH at reflux to give the desired indenoisoxazole 6 in
2
7
27
2
5
1
68% yield for the two steps.
found: 459.1925; 3c: mp 169–170°C; H NMR (300 MHz,
CDCl ) 10.0 (bs, 1H), 8.5 (d, J=9 Hz, 1H), 7.7 (t, J=7.5
3
In conclusion, we have shown that lanthanide triflate-
mediated 1,3-dipolar cycloadditions of nitrones with
indenones is an efficient route to complex indeonisoxa-
zolidine systems. The reaction is exo specific and con-
structs three contiguous asymmetric centers with a
single reaction. In addition, these isoxazolidine interme-
diates can be further manipulated to give the corre-
sponding isoxazolines or isoxazoles in good yield.
Hz, 1H), 7.4 (d, J=7.7 Hz, 1H), 7.3 (d, J=9 Hz, 2H), 7.1
(m, 3H), 6.8 (d, J=9 Hz, 2H), 6.4 (dd, J=9, 2 Hz, 1H),
6.3 (d, J=2 Hz, 1H), 5.6 (d, J=6.6 Hz, 1H), 4.1 (m, 2H),
3.8 (2×s, 2×3H), 3.6 (s, 3H), 2.2 (s, 3H); HRMS calcd for
C H N O (M+H): 489.2026, found: 489.2010; 3e: mp
28
29
2
6
1
165–167°C; H NMR (600 MHz, CDCl ) 9.9 (bs, 1H), 8.5
3
(d, J=8.2 Hz, 1H), 8.1 (d, J=8.8 Hz, 2H), 7.7 (t, J=7.9
Hz, 1H), 7.4 (d, J=7.5 Hz, 1H), 7.3 (d, J=8.8 Hz, 2H),
7.1 (d, J=8.4 Hz, 1H), 6.4 (dd, J=8.4, 2.4 Hz, 1H), 6.3 (d,
J=2.4 Hz, 1H), 5.6 (d, J=6.4 Hz, 1H), 4.2 (d, J=9.2 Hz,
1H), 3.9 (s, 2H), 3.8 (s, 3H), 3.7 (dd, J=9.2, 6.4 Hz, 1H),
References
3
.6 (s, 3H), 2.1 (s, 3H); HRMS calcd for C H N O
27 26 3 7
1
1
. (a) Syassi, B.; El, B. B.; Benabdellah, G. A.; Hassikou, A.
D.; Mohamed, N.; Riviere, M.; Bougrin, K.; Soufiaoui, M.
Tetrahedron Lett. 1999, 40, 7205–7209; (b) Malamidou-
Xenikaki, E.; Coutouli-Argyropoulou, E. Liebigs Ann.
Chem. 1992, 1, 75–78; (c) Burdisso, M.; Grunanger, P.;
Rastelli, A. J. Org. Chem. 1990, 55, 3427–3429; (d) Auric-
chio, S.; Ricca, A. Tetrahedron 1987, 43, 3983–3986.
. (a) Kobayashi, S.; Akiyama, R. Tetrahedron Lett. 1998,
(M+H): 504.1771, found: 504.1782; 6: mp 210–212°C; H
NMR (300 MHz, CDCl ) 9.9 (bs, 1H), 8.6 (d, J=9 Hz,
3
1H), 8.1 (d, J=9 Hz, 2H), 7.4 (t, J=7.5 Hz, 1H), 7.1 (d,
J=9 Hz, 1H), 7.0 (d, J=9 Hz, 2H), 3.9 (s, 3H), 2.3 (s,
3H); HRMS calcd for C H N O (M+H): 335.1032,
19
15
2
4
found: 335.1022.
7. Bromination occurs exclusively on C-3a adjacent to the
1
2
indenone carbonyl. H NMR indicates the process was
39, 9211–9214; (b) Sanchez-Blanco, A. I.; Gothelf, K. V.;
stereospecific as only one brominated intermediate was
Jorgensen, K. A. Tetrahedron Lett. 1997, 38, 7923–7926;
observed.
.
.