10.1002/anie.201913091
Angewandte Chemie International Edition
RESEARCH ARTICLE
98729877; b) H. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H.
Meng, J. Caro, J. Am. Chem. Soc. 2018, 140, 1009410098; c) Q. Sun,
B. Aguila, L. D. Earl, C. W. Abney, L. Wojtas, P. K. Thallapally, S. Ma,
Adv. Mater. 2018, 30, 1705479; d) Y. Zeng, R. Zou, Y. Zhao, Adv.
Mater. 2016, 28, 28552873; e) Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.
A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, D. Zhao, Chem. Mater.
2016, 28, 12771285; f) J.-R. Song, J. Sun, J. Liu, Z.-T. Huang, Q.-Y.
Zheng, Chem. Commun. 2014, 50, 788791.
functional groups. Although the construction of 3D COFs has
been considered as a big challenge,[12] this study will definitely
encourage us to synthesize functional 3D COFs for interesting
applications in future.
Experimental Section
[4]
a) R. Chen, J.-L. Shi, Y. Ma, G. Lin, X. Lang, C. Wang, Angew. Chem.
Int. Ed. 2019, 58, 64306434; Angew. Chem. 2019, 131, 64966500; b)
S. Yan, X. Guan, H. Li, D. Li, M. Xue, Y. Yan, V. Valtchev, S. Qiu, Q.
Fang, J. Am. Chem. Soc. 2019, 141, 29202924; C) X. Wang, L. Chen,
S. Y. Chong, M. A. Little, Y. Wu, W.-H. Zhu, R. Clowes, Y. Yan, M. A.
Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10,
11801189; d) X. Han, Q. Xia, J. Huang, Y. Liu, C. Tan, Y. Cui, J. Am.
Chem. Soc. 2017, 139, 86938697; e) S. Lin, C. S. Diercks, Y.-B.
Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P.
Yang, O. M. Yaghi, C. J. Chang, Science, 2015, 349, 1208; f) L.
Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5,
27892793; g) S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-
Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 1981619822.
a) P. Wang, F. Zhou, C. Zhang, S.-Y. Yin, L. Teng, L. Chen, X.-X. Hu,
H.-W. Liu, X. Yin, X.-B. Zhang, Chem. Sci. 2018, 9, 84028408; b) Z. Li,
N. Huang, K. H. Lee, Y. Feng, S. Tao, Q. Jiang, Y. Nagao, S. Irle, D.
Jiang, J. Am. Chem. Soc. 2018, 140, 1237412377; c) S.-Y. Ding, M.
Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am.
Chem. Soc. 2016, 138, 30313037; d) G. Das, B. P. Biswal, S.
Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma,
R. Banerjee, Chem. Sci. 2015, 6, 39313939.
a) Y. Meng, G. Lin, H. Ding, H. Liao, C. Wang, J. Mater. Chem. A, 2018,
6, 1718617191; b) S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma,
S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017,
139, 42584261; c) C. R. Mulzer, L. Shen, R. P. Bisbey, J. R. McKone,
N. Zhang, H. D. Abruña, W. R. Dichtel, ACS Cent. Sci. 2016, 2,
667673; d) Z. A. Ghazi, L. Zhu, H. Wang, A. Naeem, A. M. Khattak, B.
Liang, N. A. Khan, Z. Wei, L. Li, Z. Tang, Adv. Energy Mater. 2016, 6,
1601250; e) Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H. Lee,
W. Zhang, Angew. Chem. Int. Ed. 2016, 55, 17371741; Angew. Chem.
2016, 128, 17691773.
a) Z. Meng, A. Aykanat, K. A. Mirica, Chem. Mater. 2019, 31, 819825;
b) H. Xu, S. Tao, D. Jiang, Nat. Mater. 2016, 15, 722726; c) H. Ma, B.
Liu, B. Li, L. Zhang, Y.-G. Li, H.-Q. Tan, H.-Y. Zang, G. Zhu, J. Am.
Chem. Soc. 2016, 138, 58975903; d) S. Chandra, T. Kundu, K. Dey,
M. Addicoat, T. Heine, R. Banerjee, Chem. Mater. 2016, 28,
14891494.
a) H. Ding, J. Li, G. Xie, G. Lin, R. Chen, Z. Peng, C. Yang, B. Wang, J.
Sun, C. Wang, Nat. Commun. 2018, 9, 5234; b) E. Jin, M. Asada, Q. Xu,
S. Dalapati, M. A. Addicoat, M. A. Brady, H. Xu, T. Nakamura, T. Heine,
Q. Chen, D. Jiang, Science 2017, 357, 673676; c) D. D. Medina, T.
Sick, T. Bein, Adv. Energy Mater. 2017, 7, 1700387; d) G. H. V.
Bertrand, V. K. Michaelis, T.-C. Ong, R. G. Griffin, M. Dinca, Proc. Natl.
Acad. Sci. USA 2013, 110, 49234928; e) E. L. Spitler, W. R. Dichtel,
Nat. Chem. 2010, 2, 672677.
Synthesis of 2D-PdPor-COF. A Pyrex tube was charged with p-
phenylenediamine (12.8 mg, 0.12 mmol), p-PdPor-CHO (50 mg, 0.06
mmol), 2 mL o-dichlorobenzene, 2 mL n-butanol, and 0.4 mL of 3 M
aqueous acetic acid. After being degassed by freeze-pump-thaw
technique for three times and then sealed under vacuum, the tube was
placed in an oven at 120 °C for 3 d. The resulting precipitate was filtered
off, exhaustively washed by Soxhlet extractions with tetrahydrofuran and
dichloromethane for 2 d, dried at 80 °C under vacuum for overnight. The
2D-PdPor-COF was isolated as a crimson powder (55.4 mg, 88% yield).
Elemental analysis for the calculated formula (C60H36N8Pd)n: C, 73.88%;
H, 3.72%; N, 11.49%. Found: C, 72.08%; H, 3.60%; N, 10.86%.
Synthesis of 3D-PdPor-COF. A Pyrex tube was charged with TAPM
(22.8 mg, 0.06 mmol), p-PdPor-CHO (50 mg, 0.06 mmol), 3.6 mL o-
dichlorobenzene, 0.4 mL n-butanol, and 0.4 mL of 6 M aqueous acetic
acid. After being degassed by freeze-pump-thaw technique for three
times and then sealed under vacuum, the tube was placed in an oven at
120 °C for 7 d. The resulting precipitate was filtered off, exhaustively
washed by Soxhlet extractions with tetrahydrofuran and dichloromethane
for 2 d, dried at 80 °C under vacuum for overnight. The 3D-PdPor-COF
was isolated as a tibetan orange powder (60.3 mg, 83% yield). Elemental
analysis for the calculated formula (C73H44N8Pd)n: C, 76.94%; H, 3.89%;
N, 9.83%. Found: C, 73.66%; H, 4.39%; N, 8.95%.
[5]
[6]
Acknowledgements
C.W. gratefully acknowledge financial support from the National
Natural Science Foundation of China (21772149 and 21572170),
the Funds for Creative Research Groups of Hubei Province
(2017CFA002) and the Fundamental Research Funds for the
Central Universities. J.S. also acknowledge financial support
from the National Natural Science Foundation of China
(21871009, 21621061 and 21527803), the Swedish Research
Council, and the Knut and Alice Wallenberg Foundation for
financial supports.
[7]
[8]
Keywords: dimensionality effect • functional moieties • COFs •
size-selective catalysis • CO2 adsorption
[1]
a) S. J. Lyle, P. J. Waller, O. M. Yaghi, Trends Chem. 2019, 1,
172184; b) D. Jiang, X. Chen, K. Geng, R. Liu, K. T. Tan, Y. Gong, Z.
Li, S. Tao, Q. Jiang, Angew. Chem. Int. Ed. 2019, DOI:
[9]
a) S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu, D. Wu, X. Wang, Y. Han, Q.
Liang, F. Zhang, Nat. Commun. 2019, 10, 2467; b) X. Li, Q. Gao, J.
Wang, Y. Chen, Z.-H. Chen, H.-S. Xu, W. Tang, K. Leng, G.-H. Ning, J.
Wu, Q.-H. Xu, S. Y. Quek, Y. Lu, K. P. Loh, Nat. Commun. 2018, 9,
2335; c) X. Li, C. Zhang, S. Cai, X. Lei, V. Altoe, F. Hong, J. J. Urban, J.
Ciston, E. M. Chan, Y. Liu, Nat. Commun. 2018, 9, 2998; d) B. Gole, V.
Stepanenko, S. Rager, M. Grüne, D. D. Medina, T. Bein, F. Würthner, F.
Beuerle, Angew. Chem. Int. Ed. 2018, 57, 846850; Angew. Chem.
2018, 130, 856860; e) Keller, N.; Galik, M.; Sharapa, D.; Soni, H. R.;
Zehetmaier, P. M.; Rager, S.; Auras, F.; Jakowetz, A. C.; Görling, A.;
Clark, T.; Bein, T. J. Am. Chem. Soc. 2018, 140, 1654416552; f) C.
Qian, Q.-Y. Qi, G.-F. Jiang, F.-Z. Cui, Y. Tian, X. Zhao, J. Am. Chem.
10.1002/ange.201904291;
Angew.
Chem.
2019,
DOI:
10.1002/ange.201904291; c) M. S. Lohse, T. Bein, Adv. Funct. Mater.
2018, 28, 1705553; d) J. L. Segura, M. J. Mancheno, F. Zamora, Chem.
Soc. Rev. 2016, 45, 56355671; e) Y. Jin, Y. Hu, W. Zhang, Nat. Rev.
Chem. 2017, 1, 0056; f) S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013,
42, 548568.
[2]
[3]
A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M.
Yaghi, Science 2005, 310, 11661170.
a) C. Gao, J. Li, S. Yin, G. Lin, T. Ma, Y. Meng, J. Sun, C. Wang,
Angew. Chem. Int. Ed. 2019, 58, 97709775; Angew. Chem. 2019, 131,
This article is protected by copyright. All rights reserved.