Page 7 of 9
Journal of the American Chemical Society
(3)
(4)
(5)
(6)
(7)
(8)
Shiraishi, Y.; Takeda, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.;
Hirai, T. Chem. Commun. 2011, 47, 7863.
Navarro, R.; Pawelec, B.; Trejo, J.; Mariscal, R.; Fierro, J. J.
Catal. 2000, 189, 184.
Liu, J.; He, K.; Wu, W.; Song, T. B.; Kanatzidis, M. G. J. Am.
Chem. Soc. 2017, 139, 2900.
Wan, Y.; Wang, H.; Zhao, Q.; Klingstedt, M.; Terasaki, O.; Zhao,
D. J. Am. Chem. Soc. 2009, 131, 4541.
Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. J. Am.
Chem. Soc. 2005, 127, 9374.
Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.;
Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C. Science
2010, 328, 224.
White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie,
D. J. Chem. Soc. Rev. 2009, 38, 481.
CONCLUSIONS
1
2
3
4
5
6
7
8
In conclusion, we have developed a novel COFꢀtemplated
strategy for the sizeꢀcontrolled synthesis of stable and highly
dispersed unltrafine metal NPs. The thioetherꢀcontaining COF
was rationally designed and synthesized for the confined
growth of metal NPs. With the aid of the evenly distributed
thioether groups in the ordered framework structure, ultrafine
Pt or Pd nanoparticles (1.7 ± 0.2 nm) with a narrow size
distribution were successfully obtained. The COFꢀsupported
ultrafine nanoparticles show excellent catalytic activities (low
catalyst loading, mild reaction conditions, and high yielding)
towards the reduction of nitrophenol and SuzukiꢀMiyaura
coupling reaction. More importantly, these metal NP catalysts
are highly stable and easily recycled and reused without loss
of catalytic activity. The structure characterization of ultrafine
metal NPs suggests that they likely reside in the pores of the
COF structure, with only limited deposition on the surface.
The crystalline COF structure with thioether groups in the
wellꢀdefined cavity is critical for the successful synthesis of
NPs with narrow size distribution, providing favorable
accommodation sites for nanoparticles through metalꢀsulfur
binding interactions, confined space for sizeꢀcontrolled growth
of NPs, and also the protecting shell preventing the
aggregation of NPs. This work will open a new frontier on
design and preparation of highly stable metal NP@COF
composite materials with wellꢀdispersed NPs of narrow size
distribution. Further diversifying various COF structures and
different nanomaterials would provide great opportunities to
prepare functional composite nanomaterials for different
potential applications.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9)
(10)
Chen, L.; Luque, R.; Li, Y. Chem. Soc. Rev. 2017, 46, 4614.
(11) Shang, L.; Bian, T.; Zhang, B.; Zhang, D.; Wu, L. Z.; Tung, C. H.;
Yin, Y.; Zhang, T. Angew. Chem., Int. Ed. 2014, 53, 250.
Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.;
Ryoo, R. Nature 2001, 412, 169.
Nethravathi, C.; Anumol, E. A.; Rajamathi, M.; Ravishankar, N.
Nanoscale 2011, 3, 569.
Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.;
Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. J. Am. Chem.
Soc. 2012, 134, 11276.
Huang, Y. B.; Wang, Q.; Liang, J.; Wang, X.; Cao, R. J. Am.
Chem. Soc. 2016, 138, 10104.
Yang, Q.; Xu, Q.; Jiang, H. L. Chem. Soc. Rev. 2017, 46, 4774.
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger,
A. J.; Yaghi, O. M. Science 2005, 310, 1166.
Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
Colson, J. W.; Dichtel, W. R. Nat. Chem. 2013, 5, 453.
Jin, Y.; Hu, Y.; Zhang, W. Nat. Rev. Chem. 2017, 1, s41570.
Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875.
Colson, J. C., J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M.
P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel,
W. R. Science 2011, 332, 228.
Ding, S.ꢀY.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.ꢀG.; Su, C.ꢀ
Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
Xu, H.; Tao, S. S.; Jiang, D. L. Nat. Mater. 2016, 15, 722.
Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S.ꢀH.;
Zhang, W. Angew. Chem., Int. Ed. 2016, 55, 1737.
Kalidindi, S. B.; Oh, H.; Hirscher, M.; Esken, D.; Wiktor, C.;
Turner, S.; Van Tendeloo, G.; Fischer, R. A. Chem. Eur. J. 2012,
18, 10848.
Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci.
2014, 5, 2789.
Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Nat.
Commun. 2014, 5, 5040.
Pachfule, P.; Panda, M. K.; Kandambeth, S.; Shivaprasad, S. M.;
Díaz, D. D.; Banerjee, R. J. Mater. Chem. A 2014, 2, 7944.
Pachfule, P.; Kandambeth, S.; Diaz Diaz, D.; Banerjee, R. Chem.
Commun. 2014, 50, 3169.
Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Angew.
Chem., Int. Ed. 2016, 55, 13184.
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
ASSOCIATED CONTENT
(25)
(26)
Supporting Information. Detailed experimental procedures, FTꢀ
IR spectra, solidꢀstate 13C CPꢀMAS NMR spectrum, Gas
adsorption data, TGA graph, SEM and TEM images, XPS
analysis, control experiments and structural simulation. This
material is available free of charge via the Internet at
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
Corresponding Author
*wei.zhang@colorado.edu
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
ChanꢀThaw, C. E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.;
Prati, L. Nano Lett. 2010, 10, 537.
McCaffrey, R.; Long, H.; Jin, Y.; Sanders, A.; Park, W.; Zhang,
W. J. Am. Chem. Soc. 2014, 136, 1782.
Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge,
P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee,
R. J. Mater. Chem. A 2016, 4, 2682.
Karak, S.; Kandambeth, S.; Biswal, B. P.; Sasmal, H. S.; Kumar,
S.; Pachfule, P.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 1856.
Zhu, Y.; Zhang, W. Chem Sci 2014, 5, 4957.
W. Z. acknowledges the support from Army Research Office
(w911NFꢀ12ꢀ1ꢀ0581) and K. C. Wong Education Foundation.
H. G. thanks financial support from the National Natural
Science Foundation of China (No. 21373006), the Priority
Academic Program Development of Jiangsu Higher Education
Institutions (PAPD). S. L. thanks the China Scholarship
Council for scholarship.
(36)
(37)
(38) Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.;
Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328.
REFERENCES
(39)
(40)
Khayum, M. A.; Kandambeth, S.; Mitra, S.; Nair, S. B.; Das, A.;
Nagane, S. S.; Mukherjee, R.; Banerjee, R. Angew. Chem., Int. Ed.
2016, 55, 15604.
Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.;
Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
(1)
(2)
Eustis, S.; ElꢀSayed, M. A. Chem. Soc. Rev. 2006, 35, 209.
Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z. Acs Nano 2012, 6,
8288.
7
ACS Paragon Plus Environment