Page 7 of 9
Chemical Science
Please do not adjust margins
Chemical Science
Edge Article
DOI: 10.1039/C9SC01724K
there is almost an order of magnitude reduction in the Ksv
from PPB to BiP-2b (Table 1). To the best of our knowledge
varying the Ksv of poly(p-phenyleneethynylene),36 which is
similar to the PPB backbone structure, up to an order of
magnitude by varying the pendant side chains has not been
demonstrated so far. All the BiPs have a similar polymer
backbone; thus, the quenching constant primarily depends on
how close a TCNQ molecule can approach the polymer
backbone. In the case of bifacial polymers, the polymer
backbone mimics a cylinder wherein the radius of the cylinder
is determined by the height of the monomer. The larger the
radius of the cylinder (radius of BiP-2b > BiP-3 > BiP-1), the
farther the TCNQ is from the polymer backbone, thereby
resulting in a lower quenching constant. BiPs have lower
quenching constant than the PPB even though the width of
the PPB repeat unit and hence the PPB cylinder diameter is
larger because in the case of BiPs the cycloalkyl groups are
directly positioned above and below the π-surface and thus
are more effective in weakening the BiP-TCNQ interactions
and reducing the Ksv by an order of magnitude.
Notes and references
1.
2.
3.
4.
5.
B. A. G. Hammer and K. Mullen, Chem. Rev., 2016, 116,
2103-2140.
J. W. Colson and W. R. Dichtel, Nat. Chem., 2013, 5, 453-
465.
L. Ma, S. Wang, X. Feng and B. Wang, Chin. Chem. Lett.,
2016, 27, 1383-1394.
L. Yang and D.-C. Wei, Chin. Chem. Lett., 2016, 27, 1395-
1404.
A. Narita, X. L. Feng, Y. Hernandez, S. A. Jensen, M. Bonn,
H. F. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen,
A. H. R. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T.
Balandina, S. Mahesh, S. De Feyter and K. Mullen, Nat.
Chem., 2014, 6, 126-132.
6.
J. Lee, A. J. Kalin, T. Y. Yuan, M. Al-Hashimi and L. Fang,
Chemical Science, 2017, 8, 2503-2521.
7.
P. M. Byers and I. V. Alabugin, J. Am. Chem. Soc., 2012,
134, 9609-9614.
8.
D. Hertel, U. Scherf and H. Bassler, Adv. Mater., 1998, 10,
1119-1122.
9.
S. R. Bheemireddy, M. P. Hautzinger, T. Li, B. Lee and K.
N. Plunkett, J. Am. Chem. Soc., 2017, 139, 5801-5807.
C. S. Hartley, E. L. Elliott and J. S. Moore, J. Am. Chem.
Soc., 2007, 129, 4512-4513.
I. C.-Y. Hou, Y. Hu, A. Narita and K. Müllen, Polym. J.,
2017, 50, 3-20.
D. Lehnherr, C. Chen, Z. Pedramrazi, C. R. DeBlase, J. M.
Alzola, I. Keresztes, E. B. Lobkovsky, M. F. Crommie and
W. R. Dichtel, Chemical Science, 2016, 7, 6357-6364.
Y. J. Li, Z. Y. Jia, S. Q. Xiao, H. B. Liu and Y. L. Li, Nature
Communications, 2016, 7.
F. Schlutter, T. Nishiuchi, V. Enkelmann and K. Mullen,
Angew. Chem. Int. Ed., 2014, 53, 1538-1542.
T. Y. Zheng, Z. X. Cai, R. Ho-Wu, S. H. Yau, V. Shaparov, T.
Goodson and L. P. Yu, J. Am. Chem. Soc., 2016, 138, 868-
875.
10.
11.
12.
Conclusions
In conclusion, novel bifacial π-conjugated polymers that
mimic the β-strand architecture are developed. The lack of
pendant solubilizing chains, and the ability to easily vary
monomer height without significantly altering the monomer
width and to generate relatively high molecular weight
soluble polymers make the bifacial polymers potential
building blocks to control growth, assembly, and solution
processability of the 2D-π-conjugated materials. By proper
design i.e., by incorporating functional moieties that undergo
lateral polymerization, the high molecular weight, soluble
bifacial polymers can be converted into ladder polymers and
nanoribbons. Also, the lack of pendant solubilizing chains and
higher solubility will help to surpass the current limitation on
the number of strands used for 2D-grid growth. Finally, similar
to the β-strands in β-fibrils, the bifacial architecture provides
control over face-to-face interactions in 2D-π-CoPs, which
enables control of the growth, assembly and solution
processability of the 2D-π-CoPs.
13.
14.
15.
16.
17.
18.
19.
20.
21.
C. D. Zhu, D. Wang, D. Y. Wang, Y. Zhao, W. Y. Sun and Z.
Z. Shi, Angew. Chem. Int. Ed., 2018, 57, 8848-8853.
Y. Morisaki, T. Ishida and Y. Chujo, Macromolecules,
2002, 35, 7872-7877.
A. D. Schluter, P. Payamyar and H. C. Ottinger, Macromol.
Rapid Commun., 2016, 37, 1638-1650.
J. Sakamoto, J. van Heijst, O. Lukin and A. D. Schluter,
Angew. Chem. Int. Ed. Engl., 2009, 48, 1030-1069.
A. D. Schluter, M. Loffler and V. Enkelmann, Nature,
1994, 368, 831-834.
S. Gratz, D. Beyer, V. Tkachova, S. Hellmann, R. Berger, X.
L. Feng and L. Borchardt, Chem. Commun., 2018, 54,
5307-5310.
Conflicts of interest
There are no conflicts to declare.
22.
23.
A. Narita, X. Y. Wang, X. L. Feng and K. Mullen, Chem.
Soc. Rev., 2015, 44, 6616-6643.
Acknowledgements
We thank the Donors of the American Chemical Society
Petroleum Research Fund (#58444-DNI7) for partial support of
this research.
R. Fiesel, J. Huber, U. Apel, V. Enkelmann, R. Hentschke,
U. Scherf and K. Cabrera, Macromol. Chem. Phys., 1997,
198, 2623-2650.
D. K. Fu, B. Xu and T. M. Swager, Tetrahedron, 1997, 53,
15487-15494.
24.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins