Angewandte Chemie International Edition
10.1002/anie.202010809
RESEARCH ARTICLE
Keywords: 2D porous sheet • induced pore chirality • chiral
confinement • chiral conversion • self-release
Detailed experimental procedures, compound characterizations,
supporting data and movies are present in the Supporting
Information
[
1]
2]
O. Iwao, Catalytic Asymmetric Synthesis Wiley, Hoboken, 3rd ed., 2010.
G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496-
[
499.
[3]
[4]
[5]
[6]
I. Weissbuch, L. Addadi, L. Leiserowitz, Science 1991, 253, 637-645.
B. S. Green, M. Lahav, Acc. Chem. Res. 1979, 12, 191-197.
E. Brunet, Chirality 2002, 14, 135-143.
A. Kuhn, P. Fischer, Angew. Chem. Int. Ed. 2009, 48, 6857-6860; Angew.
Chem. 2009, 121, 6989-6992.
[
7]
8]
9]
T. Yutthalekha, C. Wattanakit, V. Lapeyre, S. Nokbin, C. Warakulwit, J.
Limtrakul, A. Kuhn, Nat. Commun. 2016, 7, 12678.
[
C. J. Brown, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2009,
131, 17530-17531.
[
[
Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349-358.
10] A. B. Grommet, M. Feller, R. Klajn, Nat. Nanotech. 2020, 15, 256–271.
X. Han, J. Zhang, J. Huang, X. Wu, D. Yuan, Y. Liu, Y. Cui, Nat. Commun.
018, 9, 1294.
Figure 7. Schematic representation of repeated cycles of entrapping linear
substrate, chiral transformation, and spontaneous release as chiral
macrocycle.
[11]
2
[
12]
L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M.
A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. M. Thomas, J. A.
Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K.
Thallapally, A. I. Cooper, Nat. Mater. 2014, 13, 954-960.
Conclusion
[
13] M. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553.
14] S.-L. Cai, W.-G. Zhang, R. N. Zuckermann, Z.-T. Li, X. Zhao, Y. Liu, Adv.
Mater. 2015, 27, 5762-5770.
[
Our results demonstrate that homochiral porous sheet structures
can perform highly efficient asymmetric conversion purely by
confining achiral substrates to the chiral cavities without the use
of chiral moieties or catalysts. Moreover, the near perfect
chemical transformation of the substrates allows the porous
nanosheet structures to spontaneously release as enantiopure
products, thus enabling the regenerated porous sheets to carry
out repeated cycles of binding achiral substrates to release as
chiral products without deterioration in pore performance.
[
15] S. Jhulki, J. Kim, I.-C. Hwang, G. Haider, J. Park, J. Y. Park, Y. Lee, W.
Hwang, A. A. Dar, B. Dhara, S. H. Lee, J. Kim, J. Y. Koo, M. H. Jo, C.-C.
Hwang, Y. H. Jung, Y. Park, M. Kataria, Y.-F. Chen, S.-H. Jhi, M.-H. Baik,
K. Baek, K. Kim, Chem 2020, 6, 1-11.
[16] J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V.
B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332,
228-231.
Although significant progress has been achieved in asymmetric
[17] Y. Kim, S. Shin, T. Kim, D. Lee, C. Seok, M. Lee, Angew. Chem. Int. Ed.
2013, 52, 6426-6429; Angew. Chem. 2013, 125, 6554-6557.
[18] K.-D. Zhang, J. Tian, D. Hanifi, Y. Zhang, A. C.-H. Sue, T.-Y. Zhou, L.
Zhang, X. Zhao, Y. Liu, Z.-T. Li, J. Am. Chem. Soc. 2013, 135, 17913-
17918.
synthesis using a number of porous materials,[
32,33]
most of them
are based on chiral moieties or chiral catalysts. Remarkably, the
entrapment of a linear precursor molecule for macrocyclization
enables the sheet materials to carry out clean cyclization with
extremely high enantioselectivity which is difficult with current
[19] B. Sun, Y. Kim, Y. Wang, H. Wang, J. Kim, X. Liu, M. Lee, Nat. Mater.
2018, 17, 599-604.
synthetic methodologies.[
24,25]
This is attributed that the single-
layered 2-D assembly enables all the pores to bind the linear
substrate inside uniformly discrete chiral cavities to adopt a spiral
conformation with a fixed spatial orientation, to facilitate clean
asymmetric cyclization. After the spontaneous release of the
macrocycle product, the regenerated porous sheets perform
consecutive cycles of binding the substrate for asymmetric
cyclization and spontaneous release (Figure 7), reminiscent of
enzymatic action that changes an entrapped substrate to release
as a product. We anticipate that such a purely geometric
approach to asymmetric transformation will provide a new insight
into chiral molecule foundry for diverse asymmetric conversions
and self-separation of the desired chiral products on passing
achiral substrates across their chiral cavities.
[20] R. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353-361.
[21] E. Yashima, K. Maeda, Y. Okamoto, Nature 1999, 339, 449-451.
[
22] Y. Furusho, T. Kimura, Y. Mizuno, T. Aida, J. Am. Chem. Soc. 1997, 119,
267-5268.
V. S. Shende, P. Singh, B. M. Bhanage, Catal. Sci. Technol. 2018, 8,
55-969.
24] K. Zheng, R. Hong, Nat. Prod. Rep. 2019, 36, 1546-1575.
25] Z. C. Girvin, M. K. Andrews, X. Liu, S. H. Gellman, Science 2019, 366,
528-1531.
26] V. Martí-Centelles, M. D. Pandey, M. I. Burguete, S. V. Luis, Chem. Rev.
015, 115, 8736-8834.
5
[23]
9
[
[
1
[
[
[
[
[
[
2
27] X. Liu, X. Zhou, B. Shen, Y. Kim, H. Wang, W. Pan, J. Kim, M. Lee, J.
Am. Chem. Soc. 2020, 142, 1904-1910.
28] H. Gagnon, E. Godin, C. Minozzi, J. Sosoe, C. Pochet, S. K. Collins,
Science 2020, 367, 917-921.
29] D. A. Evans, T. Rovis, M. C. Kozlowski, C. W. Downey, J. S. Tedrow, J.
Am. Chem. Soc. 2000, 122, 9134-9142.
Acknowledgements
30] H.-B. Zhang, L. Liu, Y.-L. Liu, Y.-J. Chen, J. Wang, D. Wang, Syn.
Commun. 2007, 37, 173-181.
This work was supported by the National Natural Science
Foundation of China (No. 21634005 and 51473062), Fudan
University Research Fund and in part by JSPS KAKENHI (E.Y.)
31]
R. J. Williams, A. P. Dove, R. K. O’Reilly, Polym. Chem. 2015, 6, 2998-
008.
3
(
Grant-in-Aid for Specially Promoted Research, No. 18H05209).
[32] H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905-912.
[33] L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248-1256.
6
This article is protected by copyright. All rights reserved.