L. E. Brieaddy et al. / Tetrahedron Letters 42 (2001) 3795–3797
3797
toxy or hydroxy group from the expected 4-ace-
toxymethyl or 4-hydroxymethyl intermediate to give 8c.
Alkylation of 7-azabicyclo[2.2.1]hept-2-ene (9a),17 gen-
Liss: New York, 1998; pp. 359–378.
2. Holladay, M. W.; Dart, M. J.; Lynch, J. K. J. Med.
Chem. 1997, 40, 4169–4194.
erated
from
tert-butoxycarbonyl-7-azabicy-
3. Lloyd, G. K.; Williams, M. J. Pharmacol. Exp. Ther.
clo[2.2.1]hept-2-ene (9b) using trimethylsilyl iodide in
chloroform, with 8c provided the N-alkylated product
10 in 43% yield. Two possible approaches for the
conversion of 10 to 11 were Heck cyclization18–20 and
radical initiated cyclization.21,22 We found that
intramolecular cyclization of 10 using reductive Heck
conditions similar to that used for intermolecular
coupling12 (palladium diacetate, potassium formate,
and tetrabutyl ammonium chloride in DMF at 90°C)
provided the hexahydro-7,10-methanopyrrolo-2-[1,2-b]-
2,6-naphthyridine 11 in 45% yield. Hydrolysis of 11
using refluxing 3N hydrochloric acid effected aminoly-
sis of the 3-acetylamino group to give 90% of the
3-amino analog 12. Diazotization of 12 using sodium
nitrite in concentrated hydrochloric acid yielded the
desired epibatidine analog 3 in 28% yield.
2000, 292, 461–467.
4. Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh,
H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992,
114, 3475–3478.
5. Badio, B.; Daly, J. W. Mol. Pharmacol. 1994, 45, 563–
569.
6. Badio, B.; Shi, D.; Garraffo, M.; Daly, J. W. Drug Dev.
Res. 1995, 36, 46–59.
7. Campillo, N.; Paez, J. A.; Alkorta, I.; Goya, P. J. Chem.
Soc., Perkin Trans. 2 1998, 2665–2670.
8. Glennon, R. A.; Dukat, M. In Neuronal Nicotinic Recep-
tors: Pharmacology and Therapeutic Opportunities;
Americ, S. P.; Brioni, J. D., Eds. Nicotinic cholinergic
receptor pharmacophores. Wiley-Liss: New York, 1998;
pp. 271–284.
9. Glennon, R. A.; Dukat, M. Pharm. Acta Helv. 2000, 74,
103–114.
Epibatidine analog 4 was synthesized from 2-amino-6-
methylpyridine (13) by a set of reactions exactly
analogous to those used to prepare analog 3 (see
Scheme 2). The yield in each step was similar to the
analogous step in the synthesis of 3.
10. Brieaddy, L. E.; Liang, F.; Abraham, P.; Lee, J. R.;
Carroll, F. I. Tetrahedron Lett. 1998, 39, 5321–5322.
11. Kotian, P. L.; Carroll, F. I. Synth. Commun. 1995, 25,
63–71.
12. Liang, F.; Navarro, H. A.; Abraham, P.; Kotian, P.;
Ding, Y.-S.; Fowler, J.; Volkow, N.; Kuhar, M. J.;
Carroll, F. I. J. Med. Chem. 1997, 40, 2293–2295.
13. Holladay, M. W.; Cosford, N. D. P.; McDonald, I. A. In
Neuronal Nicotinic Receptors: Pharmacology and Thera-
peutic Opportunities; Arneric, S. P.; Brioni, J. D., Eds.
Natural products as a source of nicotinic acetylcholine
receptor modulators and leads for drug discovery. Wiley-
Liss: New York, 1999; pp. 253–270.
Even though the analogs 3 and/or 4 possess several of
the structural features in proposed pharmacophores for
the a4b2 nAChR, they did not show high affinity for
this receptor site. This information provides important
insight into the design of new a4b2 nAChR ligands.
In summary, we have developed synthetic methods to
prepare the conformationally locked analogs of epiba-
tidine 3 and 4. The synthetic strategy provides interme-
diates 12 and 19 that can be manipulated to provide
access to additional epibatidine analogs.
14. Turner, S. C.; Hongbin, Z.; Rapoport, H. J. Org. Chem.
2000, 65, 861–870.
15. Meyer, M. D.; Decker, M. W.; Rueter, L. E.; Anderson,
D. J.; Dart, M. J.; Kim, K. H.; Sullivan, J. P.; Williams,
M. Eur. J. Pharmacol. 2000, 393, 171–177.
16. SYBYL, version 6.7.1; Tripos, Inc., 1699, S. Hanley Rd.,
St. Louis, MO 63144, 2000.
Acknowledgements
17. Marchand, A. P.; Allen, R. W. J. Org. Chem. 1975, 40,
2551–2552.
This research was supported by the National Institute
on Drug Abuse (Grant DA12001).
18. de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl.
1994, 33, 2379–2411.
19. Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J.
Chem. Rev. 1996, 96, 635–662.
References
20. Ripa, L.; Hallberg, A. J. Org. Chem. 1997, 62, 595–602.
21. Hoepping, A.; Johnson, K. M.; George, C.; Flippen-
Anderson, J.; Kozikowski, A. P. J. Med. Chem. 2000, 43,
2064–2071.
22. Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev.
1991, 91, 1237–1286.
1. Flores, C. M.; Hargreaves, K. M. In Neuronal Nicotinic
Receptors: Pharmacology and Therapeutic Opportunities;
Americ, S. P.; Brioni, J. D., Eds. Neuronal nicotinic
receptors: new targets in the treatment of pain. Wiley-
.