Journal of the American Chemical Society
Article
L.; Zavalij, P. Y.; Lam, Y.-F.; Vedernikov, A. N. J. Am. Chem. Soc. 2008,
AUTHOR INFORMATION
1
30, 2174. (h) Vedernikov, A. N. Chem. Commun. 2009, 32, 4781.
(i) Vedernikov, A. N. Acc. Chem. Res. 2012, 45, 803. (j) Canty, A. J.;
Denney, M. C.; van Koten, G.; Skelton, B. W.; White, A. H.
Notes
Organometallics 2004, 23, 5432.
3
II
(
12) For C(sp )−O reductive elimination from Pd , see: Marquard, S.
L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 7119.
13) (a) Canty, A. J.; Done, M. C.; Skelton, B. W.; White, A. H. Inorg.
The authors declare no competing financial interest.
(
ACKNOWLEDGMENTS
■
(
Chem. Commun. 2001, 4, 648. (b) Canty, A. J.; Denney, M. C.; Skelton,
B. W.; White, A. H. Organometallics 2004, 23, 1122.
This work was supported by the National Science Foundation
Grants CHE-111563 and CHE-1361542), and M.H.P.-T.
3
(14) For a catalytic transformation involving proposed C(sp )−
IV
OSO H bond-forming reductive elimination from Pt , see: (a) Ahli-
gratefully acknowledges support from a Foundation Ramon
́
3
quist, M.; Nielson, R. J.; Periana, R. A.; Goddard, W. A., III. J. Am.
Chem. Soc. 2009, 131, 17110. (b) Periana, R. A.; Taube, D. J.; Gamble,
S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560.
Areces Fellowship. We acknowledge Dr. Joy Racowski for
preliminary experimental studies of these reactions. We
acknowledge Dr. Jeff Kampf for X-ray crystallographic analysis
of 4d as well as funding from NSF for X-ray instrumentation
(
15) McMurtrey, K. B.; Racowski, J. M.; Sanford, M. S. Org. Lett.
012, 14, 4094.
16) (a) Racowski, J. M.; Gary, J. B.; Sanford, M. S. Angew. Chem., Int.
Ed. 2012, 51, 3414. (b) Perez-Temprano, M. H.; Racowski, J. M.;
2
(
(
Grant CHE-0840456). Dr. Eugenio Alvarado and Dr. Ansis
Maleckis provided assistance with NMR spectroscopic analysis.
Finally, Prof. Allan Canty is gratefully acknowledged for valuable
discussions.
́
Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 4097.
(17) Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics
2
003, 22, 2775.
18) Unless otherwise noted, all of the PdIV complexes were formed as
a >20:1 ratio of stereoisomers.
19) In our system, treatment of 1 with NaOH or NMe OH led to the
(
REFERENCES
■
(
3
1) (a) Racowski, J. M.; Sanford, M. S. Top. Organomet. Chem. 2011,
5, 61. (b) Canty, A. J. Dalton Trans. 2009, 10409. (c) Vedernikov, A.
(
4
formation of a complex mixture of products.
20) More soluble tetramethyl- or tetrabutylammonium salts were
used for low-temperature NMR characterization, except for complex
e, which was generated with sodium dimethylphosphate in DMSO.
21) See the Supporting Information for a full discussion and NMR
characterization.
22) The tosylate reductive elimination product could not be isolated
N. Top. Organomet. Chem. 2010, 31, 101.
(
(
2) For recent reviews of ligand-directed C−H functionalization, see:
(
(
(
a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
b) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
c) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012,
2
(
4
(
2
5, 788.
3) (a) Pilarski, L. T.; Selander, N.; Bo
009, 11, 5518. (b) Alam, R.; Pilarski, L. T.; Pershagen, E.; Szabo,
J. Am. Chem. Soc. 2012, 134, 8778. (c) Pilarski, L. T.; Janson, P. G.;
Szabo, K. J. J. Org. Chem. 2011, 76, 1503. (d) Check, C. T.; Henderson,
(
̈
se, D.; Szabo,
́
K. J. Org. Lett.
K. J.
cleanly and was therefore characterized by NMR analysis of the crude
reaction mixture.
́
(
23) Reductive elimination from complex 2e proceeded cleanly only
in DMSO.
24) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2011, 50, 1478.
25) There was minimal change in the product ratio or NMR shifts
́
W. H.; Wray, B. C.; Vanden Eynden, M. J.; Stambuli, J. P. J. Am. Chem.
Soc. 2011, 133, 18503.
(
(
4) (a) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005,
(
1
27, 7690. (b) Liu, G. S.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
when the reaction was conducted under rigorously dry conditions (i.e.,
in an inert-atmosphere glovebox with dry solvent and reagents) versus
ambient conditions (i.e., with reactions set up on the benchtop with
commercial solvents and reagents). Furthermore, the addition of 50
(
c) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737.
(
d) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132,
6
284. (e) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2013, 15, 46.
(
f) Martinez, C.; Wu, Y.; Weinstein, A. B.; Stahl, S. S.; Liu, G.; Muniz,
̃
equiv of exogenous H O resulted in minimal change in the product
2
K. J. Org. Chem. 2013, 78, 6309. (g) Mun
Streuff, J. J. Am. Chem. Soc. 2008, 130, 763.
̃
iz, K.; Hovelman, C. H.;
ratios. See p S22 in the Supporting Information for complete details.
(
(
26) NMR yields are reported.
2
IV
(
5) For C(sp )−O reductive elimination from Pd , see: (a) Racowski,
27) A mixture of NMe OTs (2.5 equiv) and NaOTs (2.5 equiv) was
4
J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
b) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005,
27, 12790.
used for the formation of complex 3f.
28) For an example of H-bonding between HF and a Pd fluoride,
see: Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 3796.
(
IV
(
1
(
6) Gary, J. B.; Sanford, M. S. Organometallics 2011, 30, 6143.
(
(
29) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
30) The rate constants shown in Table 2 were obtained from the
(
7) Yamamoto, Y.; Kuwabara, S.; Matsuo, S.; Ohno, T.; Nishiyama,
H.; Itoh, K. Organometallics 2004, 23, 3898.
8) (a) Oloo, W. N.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics
013, 32, 5601. (b) Oloo, W. N.; Zavalij, P. Y.; Zhang, J.; Khaskin, E.;
Vedernikov, A. N. J. Am. Chem. Soc. 2010, 132, 14400.
9) Qu, F.; Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M. Chem.
Commun. 2014, 50, 3036.
average and standard deviation of three separate experiments for each
complex, with the reactions conducted under anhydrous conditions.
(
2
(31) The values of kobs for reductive elimination from complexes 2a−c
under rigorously anhydrous conditions (i.e., in an inert-atmosphere
glovebox with dried solvent and reagents) were nearly identical to those
obtained under ambient conditions (i.e., on the benchtop with
commercial solvents and reagents), where trace amounts of water are
expected. Only the addition of exogenous water (10−500 equiv added
to reactions set up under ambient conditions) impacted the reductive
elimination kinetics. See pp S30−S34 in the Supporting Information for
more details.
(
2
III
(
10) For C(sp )−O reductive elimination from Pd , see: Powers, D.
C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009,
31, 17050.
11) For C(sp )−O reductive elimination from Pt , see: (a) Williams,
B. S.; Holland, A. W.; Goldberg, K. I. J. Am. Chem. Soc. 1999, 121, 252.
1
(
3
IV
(
b) Williams, B. S.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 2576.
(32) Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. J. Am. Chem. Soc.
(
c) Smythe, N. A.; Grice, K. A.; Williams, B. S.; Goldberg, K. I.
2
007, 129, 10382.
Organometallics 2009, 28, 277. (d) Luinstra, G. A.; Labinger, J. A.;
Bercaw, J. E. J. Am. Chem. Soc. 1993, 115, 3004. (e) Vedernikov, A. N.;
Binfield, S. A.; Zavalij, P. Y.; Khusnutdinova, J. R. J. Am. Chem. Soc.
2
006, 128, 82. (f) Khusnutdinova, J. R.; Zavalij, P. Y.; Vedernikov, A. N.
Organometallics 2007, 26, 3466. (g) Khusnutdinova, J. R.; Newman, L.
E
dx.doi.org/10.1021/ja507056u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX