Page 5 of 8
Journal of the American Chemical Society
Poisoning in the Developing World. QJM 2000, 93, 715–731.
Table 2. Diffusion flux (F) and permeability coefficient parameter of
the membrane (P)
(3)
Graham, L. M.; Nguyen, T. M.; Lee, S. B. Nanodetoxification:
Emerging Role of Nanomaterials in Drug Intoxication
Treatment. Nanomedicine (Lond) 2011, 6, 921–928.
Bae, H.; Lee, K. Medico legal Consideration of Gastric Lavage
in Acutely Intoxicated Patients. Emerg. Med. J. 2007, 24, 233.
Watson, W. A.; Cremer, K. F.; Chapman, J. A. Gastrointestinal
Obstruction Associated With MultipleꢀDose Activated Charcoal.
J. Emerg. Med. 1986, 4, 401–407.
1
2
3
4
Jejunum
Ileum
MILꢀ127
(4)
(5)
H4TazBz
MILꢀ127
0.05
H4TazBz
1.12
F (µg·cmꢀ2·hꢀ1)
Papp (cm·hꢀ1)
1.05
0.04
5
6
7
8
9
0.0014
0.0013
0.0010
0.0011
(6)
(7)
Neuvonen, P. J.; Olkkola, K. T. Oral Activated Charcoal in the
Treatment of Intoxications. Med. Toxicol. Adverse Drug Exp.
1988, 3, 33–58.
Willey II, J. F.; Osterhoudt, K. C. Poisonings. In Pediatric
Emergency Medicine Secrets; Saunders, E., Ed.; Philadelphia,
2015; pp 312–332.
Roivas, L.; Neuvonen, P. J. Reversible Adsorption of Nicotinic
Acid onto Charcoal In Vitro. J. Pharm. Sci. 1992, 81, 917–919.
Leroux, J. Injectable Nanocarriers for Biodetoxification. Nat.
Nanotechnol. 2007, 2, 679–684.
Howell, B. A.; Chauhan, A. Current and Emerging
Detoxification Therapies for Critical Care. Materials (Basel).
2010, 3, 2483–2505.
Bom, A.; Bradley, M.; Cameron, K.; Clark, J. K.; Egmond, J.
Van; Feilden, H.; Maclean, E. J.; Muir, A. W.; Palin, R.; Rees,
D. C.; Zhang, M. A Novel Concept of Reversing Neuromuscular
Block: Chemical Encapsulation of Rocuronium Bromide by a
CyclodextrinꢀBased Synthetic Host. Angew. Chem. Int. Ed.
2002, 41 (2), 265–271.
Furthermore, the viability of the intestinal membrane was
checked by measuring the transepithelial resistance (TEER),
which is accepted as good model for determining the membrane
integrity after the transport of chemicals.49 For this purpose, upon
the intestinal bypass of the MILꢀ127 and H4TazBz, the conductivꢀ
ity of this polarized membrane was studied via the modulation of
the ion channels (SI, Figure S19). The response of the membrane
to the addition of forskolin or biotin, which modifies the voltageꢀ
dependent K+ of a healthy membrane, supports the lack of toxicity
of both, MOF and H4TazBz ligand.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8)
(9)
(10)
CONCLUSIONS. In conclusion, MILꢀ127, combining an exꢀ
ceptional GI stability and an important drug adsorbent capacity, is
a promising safe and efficient oral detoxification treatment. Upon
a salicylate overdose, MILꢀ127 is able to drastically reduced more
than 40 times its intestinal absorption (decreasing a third the ASA
concentration in blood), avoiding associated histological damages.
In addition, except for a minor GI degradation (< 9%) and subseꢀ
quent slight iron absorption in duodenum and jejunum, the integꢀ
rity of MILꢀ127 was preserved along the GI tract, being excreted
by feces without any sign of severe toxicity. Further biodistribuꢀ
tion studies demonstrated a lack of intestinal absorption of MILꢀ
127, due to its large particle size, high structural and chemical
stability and poor intestinal permeation of both MILꢀ127 and its
constitutive ligand. These results open fascinating perspectives for
the safe and efficient treatment of poisoning and accidental intoxꢀ
ications using biocompatible MOFs.
(11)
(12)
(13)
Dias, E. M.; Petit, C. Towards the Use of MetalꢀOrganic
Frameworks for Water Reuse:
A Review of the Recent
Advances in the Field of Organic Pollutants Removal and
Degradation and the next Steps in the Field. J. Mater. Chem. A
2015, 3, 22484–22506.
Wang, B.; Lv, X. L.; Feng, D.; Xie, L. H.; Zhang, J.; Li, M.;
Xie, Y.; Li, J. R.; Zhou, H. C. Highly Stable Zr(IV)ꢀBased
MetalꢀOrganic Frameworks for the Detection and Removal of
Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc.
2016, 138 (19), 6204–6216.
Zeng, T.; Zhang, X.; Wang, S.; Niu, H.; Cai, Y. Spatial
Confinement of a Co3O4 Catalyst in Hollow Metal–Organic
Frameworks as a Nanoreactor for Improved Degradation of
Organic Pollutants. Environ. Sci. Technol. 2015, 49, 2350–2357.
Wang, J. H.; Li, M.; Li, D. An Exceptionally Stable and Waterꢀ
Resistant MetalꢀOrganic Framework with Hydrophobic
Nanospaces for Extracting Aromatic Pollutants from Water.
Chem. - A Eur. J. 2014, 20, 12004–12008.
Zhang, Q.; Yu, J.; Cai, J.; Song, R.; Cui, Y.; Yang, Y.; Chen, B.;
Qian, G. A Porous Metal–organic Framework with –COOH
Groups for Highly Efficient Pollutant Removal. Chem.
Commun. 2014, 50, 14455–14458.
Shi, P.ꢀF.; Zhao, B.; Xiong, G.; Hou, Y.ꢀL.; Cheng, P. Fast
Capture and Separation of, and Luminescent Probe for, Pollutant
Chromate Using a MultiꢀFunctional Cationic Heterometalꢀ
Organic Framework. Chem. Commun. 2012, 48, 8231–8233.
SimonꢀYarza, T.; GiménezꢀMarqués, M.; Mrimi, R.; Mielcarek,
A.; Gref, R.; Horcajada, P.; Serre, C.; Couvreur, P. A Smart
MetalꢀOrganic ꢀFramework Nanomaterials for Lung Targeting.
Angew. Chem. Int. Ed. 2017, 56, 15565–15569.
SimonꢀYarza, T.; Baati, T.; Neffati, F.; Njim, L.; Couvreur, P.;
Serre, C.; Gref, R.; Najjar, M. F.; Zakhama, A.; Horcajada, P. In
Vivo Behavior of MILꢀ100 Nanoparticles at Early Times after
Intravenous Administration. Int. J. Pharm. 2016, 511 (2), 1042–
1047.
Wu, M. X.; Yang, Y. W. Metal–Organic Framework (MOF)ꢀ
Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater.
2017, 29, 1606134.
Hidalgo, T.; GiménezꢀMarqués, M.; Bellido, E.; Avila, J.;
Asensio, M. C.; Salles, F.; Lozano, M. V.; Guillevic, M.;
SimónꢀVázquez, R.; GonzálezꢀFernández, A.; Serre, C.; Alonso,
M. J.; Horcajada, P. ChitosanꢀCoated Mesoporous MILꢀ100(Fe)
Nanoparticles as Improved BioꢀCompatible Oral Nanocarriers.
Sci. Rep. 2017, 7 (March), 43099.
(14)
(15)
(16)
(17)
(18)
(19)
ASSOCIATED CONTENT
Supporting Information
The Supporting Information provides full details of the synthetic
procedures, biological simulated media, stability studies (PXRD,
FTIR, N2 sorption measurements), HPLC determinations, in vitro
tests, in vivo biodistribution and ex vivo intestinal permeation
studies.
AUTHOR INFORMATION
Corresponding Author
*patricia.horcajada@imdea.org
ACKNOWLEDGMENT
This works was supported by UniverSud Paris (ref: 2010–25) and
CNRS/DGRST ref: 24432) projects. SR and PH acknowledge the
Marie SklodowskaꢀCurie Programme (MSCAꢀIFꢀEFꢀSTꢀ2015ꢀ
705529). PH acknowledges the Spanish Ramón y Cajal Proꢀ
gramme (grant agreement no. 2014ꢀ16823) and the People Proꢀ
gramme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007ꢀ2013) under REA grant
agreement no. 291803. Authors would like to acknowledge Laura
García for the ICPꢀOES characterizations, Carine Livage for the
FEGꢀSEM observations and Carmen Sanchez for the cover art
design.
(20)
(21)
REFERENCES
(22)
de Oliveira, C. A. F.; da Silva, F. F.; Jimenez, G. C.; da S. Neto,
J. F.; de Souza, D. M. B.; de Souza, I. A.; Junior, S. A.
MOF@activated Carbon: A New Material for Adsorption of
(1)
(2)
Eddleston, M. Patterns and Problems of Deliberate Selfꢀ
ACS Paragon Plus Environment