Absorption Spectrum and Kinetics of CH3C(O)O2
J. Phys. Chem., Vol. 100, No. 10, 1996 4047
6
-12
2
.2 × 10 exp(-3870/T) and our k4 ) (9.8 ( 2.0) × 10 cm3
have become aware of a similar study submitted recently to J.
Phys. Chem. by Maricq and Szente. The UV cross sections of
CH3C(O)O2 and the CH3C(O)O2 + CH3O2 rate constants (k4)
presented here and in the Maricq and Szente work are in
excellent agreement, and the CH3C(O)O2 self-reaction rate
constants (k1) agree within the error limits. An unexplained
discrepancy exists, however, between the branching ratios of
k4 determined in the two studies.
-
1
-1
molecule s , the temperature dependent rate constants can
be calculated:
-
12
6
k ) 9.8 × 10 /(1 + (1/2.2 × 10 exp(-3870/T)) (F)
4a
-12
6
k ) 9.8 × 10 /(2.2 × 10 exp(-3870/T) + 1) (G)
4b
References and Notes
(
(
(
1) Atkinson, R. Atmos. EnViron. 1990, 24A, 1.
These equations are valid only over the temperatures (263-
2) Roberts, J. M. Atmos. EnViron. 1990, 24A, 243.
-12
3
3
33 K) used in ref 14 and with the value k4 ) 9.8 × 10 cm
3) Singh, H. B.; O’Hara, D.; Herlth, D.; Bradshaw, J. D.; Sandholm,
-1 -1
molecule s , assuming k4 is independent of temperature as
S. T.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.; Crutzen, P. J.;
Kanakidou, M. A. J. Geophys. Res. 1992, D15, 16511.
suggested in ref 9.
(4) Platt, U.; LeBras, G.;Poulet, G.; Burrows, J. P.; Moortgat, G. Nature
1
990, 348, 147.
(5) Madronich, S.; Calvert, J. G. J. Geophys. Res. 1990, 95, 5697.
6) Madronich, S.; Chatfield, R. B.; Calvert, J. G.; Moortgat, G. K.;
Conclusions
(
Veyret, B.; Lesclaux, R. Geophys. Res. Lett. 1990, 17, 2361.
7) Addison, M. C.; Burrows, J. P.; Cox, R. A.; Patrick, R. Chem. Phys.
Lett. 1980, 73, 283.
A laser flash photolysis experiment was used to measure the
ultraviolet absorption spectrum of acetylperoxy radical in the
(
(
(
8) Basco, N.; Parmar, S. S. Int. J. Chem. Kinet. 1985, 17, 891.
9) Moortgat, G. K.; Veyret, B.; Lesclaux, R. J. Phys. Chem. 1989,
1
95-280 nm range. The spectrum is bimodal, with a strong
-
18
2
-1
maximum at 207 nm, σ ) 6.67 × 10
cm molecule , and
9
3, 2362.
-
18
2
a weaker maximum near 240 nm, σ ) 3.21 × 10
cm
(10) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman,
-1
G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. EnViron. 1993,
6A, 1.
11) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. ReV. 1992, 92,
667.
(12) Kenley, R. A.; Traylor, T. G. J. Am. Chem. Soc. 1975, 97, 4700.
13) Weaver, J.; Meagher, J.; Shortridge, R.; Heicklen, J. J. Photochem.
molecule . CH3O2 and HO2 cross sections were remeasured
as a part of this study at several wavelengths within the range
mentioned above. The values σ240nm(CH3O2) ) (4.12 ( 0.41)
2
(
-
18
2
-1
×
10
cm molecule and σ210nm(HO2) ) (4.19 ( 0.42) ×
(
-
18
2 -1
1
0
cm molecule were obtained. A rate constant of (1.36
1
975, 4, 341.
11
3
-1 -1
(
0.19) × 10- cm molecule
s
was determined for the
(14) Horie, O.; Moortgat, G. K. J. Chem. Soc., Faraday Trans. 1992,
8, 3305, and personal communication.
8
acetylperoxy self reaction at 298 K, using the newly obtained
(15) Lesclaux, R.; Boyd, A.; Noziere, B.; Villenave, E. LABVOC
cross sections, absorption-time profiles, and the FACSIMILE
Report, Project EV5V-CT91-0038: Second Annual Report, Aug 4, 1994.
(16) Bauer, D.; Crowley, J. N.; Moortgat, G. K. J. Photochem. Photobiol.
A: Chem. 1992, 65, 392.
-12
3
program. Rate coefficients of k4a ) (8.8 ( 1.5) × 10
molecule cm molecule
and k4b ) (1.0 ( 0.5) × 10
were similarly determined for the acetyl- and methylperoxy
cm
-1
-1
-12
3
-1
s
(
(
17) Maricq, M. M.; Wallington, T. J. J. Phys. Chem. 1992, 96, 986.
18) Maricq, M. M.; Szente, J. J.; Kaiser, E. W. J. Phys. Chem. 1994,
-1
s
cross reactions. The resulting k4 is in good agreement with the
98, 2083.
(19) Curtis, A. R.; Sweetenham, W. P. AERE Rep. R-12805 1987 (U.K.
Atomic Energy Research Establishment).
20) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
recent measurement of Lesclaux et al.,15 and the branching ratio
1
4
(0.90) is close to that reported by Horie and Moortgat.
(
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J. Chemical Kinetics and Photochemical Data for Use in Stratospheric
Modeling; Evaluation No. 11, JPL Publication 94-26; JPL: Pasadena, CA,
Acknowledgment. The authors wish to thank Dr. R.
Lesclaux for helpful comments on the manuscript. This work
was supported by the Commission of the European Community
as a part of Project EV5V-CT-0038 (LABVOC).
1
994.
(21) Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. F. NIST
Standard Reference Database 17; NIST Chemical Kinetics DatabasesVersion
6
.0; NIST: Gaithersburg, MD, 1994.
Note Added in Proof. While examining the literature for
(22) Kelly, N.; Heicklen, J. J. Photochem. 1978, 8, 83.
(
23) Weaver, J.; Meagher, J.; Shortridge, R.; Heicklen, J. J. Photochem.
975, 4, 341.
24) Moortgat, G. K.; Cox, R. A.; Schuster, G.; Burrows, J. P.; Tyndall,
G. S. J. Chem. Soc., Faraday Trans. 2 1989, 85, 809.
25) Wallington, T. J.; Maricq, M. M.; Ellermann, T.; Nielsen, O. J. J.
Phys. Chem. 1992, 96, 982.
26) Stephens, E. R. AdV. EnViron. Sci. Technol. 1969, 1, 119.
(27) Senum, G. I.; Lee, Y.-N.; Gaffney, J. S. J. Phys. Chem. 1984, 88,
1269.
the manuscript, several printing errors were noted in Section
1
1
0
III. B.3sAcetylperoxy radicals of the recent Lightfoot et al.
(
review. First, σ(205 nm) for ref 1 in Table III.12 should be
deleted; no such measurement exists. Three cross sections of
ref 2 are in error; the corrected values should be σ(205 nm) )
(
(
6
.99, σ(207 nm) ) 8.37, and σ(230 nm) ) 4.97. Finally,
-
18
σ(207 nm) ) 8.37 × 10
of ref 2 is missing from the plot in
Figure III.11. Since the acceptance of this work, the authors
JP9526298