ACS Medicinal Chemistry Letters
Letter
in Pathogenesis of Sporadic Creutzfeld-Jacob Disease. Acta Neuro-
pathol. 2009, 119, 199−210.
isozyme (Table 1, numbers in parentheses). Compound 3
inactivates each isozyme, specifically PAD4, 15−18 times faster
than the corresponding poorest inhibitor, 1. In fact, compound
1 is almost the least reactive compound against all three
isozymes tested, and there appears to be no selectivity either.
The Connolly surface for compound 1 (Figure 2C) indicates
that this compound is small enough to enter the active sites of
the PAD enzymes (Figure 2B) and equally be accessible to the
thiolate in the active site for covalent bond formation. If there
were no reactive moieties such as a chloroamidine group
present on the inhibitors, high-affinity inhibitors could be
designed to take advantage of the interactions inside the PAD
active site, and the linker may not be a concern for optimal
reactivity.
In summary, this report highlights the architecture of the
active site of PAD enzyme through the reactive ligands and
their inactivation rates of these enzymes for direct comparison
with other inhibitors and enzymes families. Further systematic
interrogation will provide tools to design nonreactive chemical
probes as potential inhibitors of PAD enzymes with therapeutic
potential.
(5) Moscarello, M. A.; Wood, D. D.; Ackerley, C.; Boulias, C. Meylin
in Multiple Sclerosis is Developmentally Immature. J. Clin. Invest.
1994, 94, 146−154.
(6) Wang, Y.; Li, P.; Wang, S.; Hu, J.; Chen, X. A.; Wu, J.; Fisher, M.;
Oshaben, K.; Zhao, N.; Gu, Y.; Wang, D.; Chen, G.; Wang, Y.
Anticancer Peptidylarginine Deiminase (PAD) Inhibitors Regulate the
Autophagy Flux and the Mammalian Target of Rapamycin Complex 1
Activity. J. Biol. Chem. 2012, 287, 25941−25953.
(7) Arita, K.; Hashimoto, H.; Shimizu, T.; Nakashima, K.; Yamada,
M.; Sato, M. Structural basis for Ca(2+)-induced Activation of Human
PAD4. Nature Struct. Mol. Biol. 2004, 11, 777−783.
(8) Kearney, P. L.; Bathia, M.; Luo, Y.; Glascock, M. C.; Catchings,
K. L.; Yamada, M.; Thompson, P. R. Kinetic Characterization of
Protein Arginine Deiminase 4: A Transcriptional Corepressor
Implicated in the Onset and Progression of Rheumatoid Arthritis.
Biochemistry 2005, 44, 10570−10582.
(9) Knuckley, B.; Bhatia, M.; Thompson, P. R. Protein Arginine
Deiminase 4: Evidence for a Reverse Protonation Mechanism.
Biochemistry 2007, 46, 6578−6587.
(10) Ke, Z.; Zhou, Y.; Hu, P.; Wang, S.; Xie, D.; Zhang, Y. Active site
cysteine is protonated in the PAD4Michaelis complex: evidence from
Born-Oppenheimer ab initio QM/MM molecular dynamics simu-
lations. J. Phys. Chem. B 2009, 113, 12750−12758.
(11) Ke, Z.; Wang, S.; Xie, D.; Zhang, Y. Born-Oppenheimer ab initio
AM/MM molecular dynamics simulations of the hydrolysis reaction
catalyzed by protein arginine deiminase 4. J. Phys. Chem. B 2009, 113,
16705−16710.
(12) Luo, Y.; Knuckley, B.; Lee, Y. H.; Stallcuo, M. R.; Thompson, P.
R. A Fluoroacetamidine-Based Inactivator of Protein Arginine
Deiminase 4: Design, Synthesis, and in Vitro and in Vivo Evaluation.
J. Am. Chem. Soc. 2006, 128, 1092−1093.
(13) Luo, Y.; Arita, K.; Bhatia, M.; Knucley, B.; Lee, Y. H.; Stallcup,
M. R.; Sato, M.; Thompson, P. Inhibitors and Inactivators of Protein
Arginine Deiminase 4: Functional and Structural Characterization.
Biochemistry 2006, 45, 11727−11736.
(14) Knuckley, B.; Causey, C. P.; Jones, J. E.; Bhatia, M.; Dreyton, C.
J.; Osborne, T. C.; Takahara, H.; Thompson, P. R. Substrate
Specificity and Kinetic Studies of PADs 1, 3 and 4 Identify Potent
and Selective Inhibitors of Protein Arginine Deiminiase 3. Biochemistry
2010, 49, 4852−4863.
(15) Causey, C. P.; Jones, J. E.; Slack, J. L.; Kamei, D.; Jones, L. E.,
Jr.; Subramanian, V.; Knucley, B.; Ebrahimi, P.; Chumanevic, A. A.;
Luo, Y.; Hashimoto, H.; Sato, M.; Hofseth, L. J.; Thompson, P. R. The
Development of N-α-(2-Carboxyl)benzoyl-N5-(2-fluoro-1-iminoeth-
yl)-L-ornithine Amide (o-F-amidine) and N-α-(2-Carboxyl)benzoyl-
N5-(2-chloro-1-iminoethyl)-L-ornithine Amide (o-Cl-amidine) As
Second Generation Protein Arginine Deiminase (PAD) Inhibitors. J.
Med. Chem. 2011, 54, 6919−6935.
ASSOCIATED CONTENT
■
S
* Supporting Information
Compounds purity data, mass spectral data, and enzyme
kinetics. This material is available free of charge via the Internet
AUTHOR INFORMATION
■
Corresponding Author
*Tel: 416-581-7601. Fax: 416-581-7621. E-mail: lkotra@
Author Contributions
The manuscript was written through contributions of all
authors.
Funding
We acknowledge the financial support of MaRS Innovations,
University Health Network, and Hospital for Sick Children.
Notes
The authors declare no competing financial interest.
ABBREVIATIONS
■
PAD, protein arginine deiminase; 2CA, 2-chloroacetamidine;
Arg, arginine
(16) Jones, J. E.; Slack, J. L.; Fang, P.; Zhang, X.; Subramanian, V.;
Causey, C. P.; Coonrod, S. A.; Guo, M.; Thompson, P. Synthesis and
Screening of a Haloacetamidine Containing Library to Identify PAD4
Selective Inhibitors. ACS Chem. Biol. 2012, 7, 160−165.
(17) Stone, E. M.; Schaller, T. H.; Bianchi, H.; Person, M. D.; Fast,
W. Inactivation of two diverse enzymes in the amidinotransferase
superfamily by 2-chloroacetamidine: dimethylarginase and peptidyl
arginine deiminase. Biochemistry 2005, 44, 13744−13752.
(18) Moscarello, M. A.; Lei, H.; Mastronardi, F. G.; Winer, S.; Tsui,
H.; Li, Z.; Ackerley, C.; Zhang, L.; Raijmakers, R.; Wood, D. D.
Inhibition of peptidyl-arginine deiminase reverses protein-hyper-
citrullination and disease in mouse models of multiple sclerosis. Dis.
Models Mech. 2013, in press.
(19) Causey, C. P.; Thompson, P. R. An improved synthesis of
haloacetamidine-based inactivators of protein-arginine deiminase-4
(PAD4). Tetrahedron Lett. 2008, 49, 4383−4385.
(20) Stillings, M. R.; et al. Substituted 1,3,4-thiadiazoles with
anticonvulsant activity. 2. Aminoalkyl derivatives. J. Med. Chem. 1986,
29, 2280−2284.
REFERENCES
■
(1) Vossenaur, E. R.; Zendman, A. J.; van Venrooji, W. J.; Pruijin, G.
J.; PAD, A. Growing Family of Citrullinating Enzymes: Genes,
Features and Involvement in Disease. Bioessays 2003, 25, 1106−1115.
(2) Ishigami, A.; Oshawa, T.; Hiratsuka, M.; Taguchi, H.; Kobayashi,
S.; Saito, Y.; Murayama, S.; Asaga, H.; Kimura, N.; Maruyama, N.
Abnormal Accumulation of Citrullinated Proteins Catalyzed by
Peptidylarginine Deiminase in Hippocampal Extracts from Patients
with Alzheimer’s Disease. J. Neurosci. Res. 2005, 80, 120−128.
(3) Jang, B.; Kim, E.; Choi, J. K.; Jin, J. K.; Kim, J. I.; Ishigami, A.;
Maruyama, N.; Carp, R. I.; Kim, Y. S.; Choi, E. K. Accumulation of
Citrullinated Proteins by Up-Regulated Peptidylarginine Deiminase 2
in Brains of Scrapie Infected Mice. A Possible Role in Pathogenesis.
Am. J. Pathol. 2008, 173, 1129−1142.
(4) Jang, B.; Jin, J. K.; Jeong, Y. C.; Cho, H. J.; Ishigami, A.; Choi, K.
C.; Carp, R. I.; Maruyama, N.; Kim, Y. S.; Choi, E. K. Involvement of
Peptidylarginine Deiminase-Mediated Post-translational Citrullination
252
dx.doi.org/10.1021/ml300377d | ACS Med. Chem. Lett. 2013, 4, 249−253