Journal of the American Chemical Society
Communication
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
Figure 2. Computed relative ground-state free energies (ΔG) of three
diastereomers of 3-methyl-2-anilinonorbornane.
ACKNOWLEDGMENTS
■
We thank the NSF for financial support through the Center for
Enabling New Technologies Through Catalysis (CENTC) and
Danielle Gray for collection of X-ray data.
chemical outcome implies that reductive elimination of the
norbornylamine from the three-coordinate (SIPr)Pd(2-
CH3C7H10)NHAr complexes occurs by a concerted pathway.
Because a direct, concerted reductive elimination from an
alkylpalladium amide has not been documented previously, we
sought to determine if the barrier we measured for such a
process is consistent with that computed for a concerted
reductive elimination. Hybrid quantum mechanics/molecular
mechanics (QM/MM) calculations were performed on a full
chemical model of 2f. The transition-state structure computed
for a concerted reductive elimination is illustrated in Figure 3.
REFERENCES
■
(1) Hartwig, J. F. Organotransition metal chemistry: from bonding to
catalysis; University Science Books: Sausalito, CA, 2010.
(2) Koo, K.; Hillhouse, G. L. Organometallics 1995, 14, 4421.
(3) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 2890.
(4) Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. J. Am. Chem. Soc.
2007, 129, 10382.
(5) Hillhouse reported reductive elimination to form an indoline
after 48 h. Because these reactions occur rapidly in the presence of
oxidant, it is unclear if this slow reaction is a purely unimolecular,
thermal process or is catalyzed by a low concentration of oxidant.
(6) Iglesias, A.; Alvarez, R.; de Lera, A. R.; Muniz, K. Angew. Chem.,
Int. Ed. 2012, 51, 2225.
(7) Neumann, J. J.; Rakshit, S.; Droge, T.; Glorius, F. Angew. Chem.,
Int. Ed. 2009, 48, 6892.
(8) Mei, T. S.; Wang, X. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131,
10806.
(9) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl,
S. S. J. Am. Chem. Soc. 2005, 127, 2868.
(10) Lautens, M.; Paquin, J. F.; Piguel, S.; Dahlmann, M. J. Org.
Chem. 2001, 66, 8127.
(11) Catellani, M.; Del Rio, A. Russ. Chem. Bull. 1998, 47, 928.
(12) Pan, J.; Su, M. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011,
50, 8647.
Figure 3. Computed transition-state structure of complex 2f.
(13) Marquard, S. L.; Rosenfeld, D. C.; Hartwig, J. F. Angew. Chem.,
Int. Ed. 2010, 49, 793.
The QM/MM simulations indicated that this transition state
lies 25.3 (ΔH⧧) and 23.9 (ΔG⧧) kcal/mol above the ground
state of 2f at 363 K. These barriers are similar to the 26 kcal/
mol barrier measured experimentally and are, therefore,
consistent with the proposed concerted reductive elimination
mechanism.
(14) Marquard, S. L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50,
7119.
(15) Esposito, O.; Gois, P. M. P.; Lewis, A. K. D. K.; Caddick, S.;
Cloke, F. G. N.; Hitchcock, P. B. Organometallics 2008, 27, 6411.
(16) Esposito, O.; Lewis, A. K. D. K.; Hitchcock, P. B.; Caddick, S.;
Cloke, F. G. N. Chem. Commun. 2007, 1157.
In conclusion, we report discrete, low-valent Pd complexes
that undergo reductive elimination of alkylamines. The steric
bulk of the SIPr and IPr ligands leads to the formation of stable
three-coordinate palladium amido complexes, which undergo
reductive elimination of alkylamine upon heating without an
external oxidant to create a higher-valent intermediate. The
stereochemical configuration of the norbornylamine products
implies that these reductive eliminations occur by a concerted
mechanism. This mechanism contrasts the stepwise mechanism
for the reductive elimination of benzylamines from four-
coordinate DPPF-ligated benzylpalladium complexes. Future
work will examine the reductive elimination of alkylamines
from complexes ligated with a range of ancillary ligands and the
development of new catalytic reactions involving this class of
reductive elimination.
(17) Marquard, S. L. Ph.D. Thesis, University of Illinois at Urbana−
Champaign, 2011.
(18) Kang, M.; Sen, A. Organometallics 2004, 23, 5396.
(19) Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics
1994, 13, 3921.
(20) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4206.
(21) Driver, M. S.; Hartwig, J. F. Organometallics 1997, 16, 5706.
(22) Yamashita, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5344.
(23) The rate constant for the reaction of 2a at 90 °C in the presence
of excess (10 equiv) SIPr was 1.0 × 10−3 s−1.
(24) Yamashita, M.; Vicario, J. V. C.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 16347.
(25) Detailed procedures for the synthesis of the syn-exo,exo-
norbornylamine products from the reductive eliminations in this
report are described in the Supporting Information.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization of complexes and
reductive elimination products, including CIF files, and
computational details. This material is available free of charge
15284
dx.doi.org/10.1021/ja307558x | J. Am. Chem. Soc. 2012, 134, 15281−15284