L. Tao, W. C. Chou, B. H. Tan, T. P. Davis
Keywords: biodegradable; hyperbranched;
oligomers; RAFT
[
1] D. R. Gill, K. W. Southern, K. A. Mofford, T.
Seddon, L. Huang, F. Sorgi, A. Thomson,
L. J. MacVinish, R. Ratcliff, D. Bilton, D. J.
Lane, J. M. Littlewood, A. K. Webb, P. G.
Middleton, W. H. Colledge, A. W. Cuthbert,
M. J. Evans, C. F. Higgins, S. C. Hyde, Gene
Ther. 1997, 4, 199.
Figure 4. (a) Agrose gel electrophoresis; (b) zeta potential and particle size analysis of
the DNA bonded by hyperbranched polymer under different P/N ratio.
[
2] G. J. Nabel, E. G. Nabel, Z. Y. Yang, B. A. Fox,
observed via the gel, consistent with the effective forma-
tion of a polymer/DNA complex.
G. E. Plautz, X. Gao, L. Huang, S. Y. Shu, D. Gordon, A. E. Chang,
Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 11307.
[
[
3] J. Rubin, E. Galanis, H. C. Pitot, R. L. Richardson, P. A. Burch,
J. W. Charboneau, C. C. Reading, B. D. Lewis, S. Stahl, E. T.
Akporiaye, D. T. Harris, Gene Ther. 1997, 4, 419.
The particle sizes and zeta potentials of the polyplexes
were also measured. As shown in Figure 4b, when the P/N
ratio of polymer to DNA is less than 10, the sizes of
polyplexes were below 200 nm. The small particle sizes can
be attributed to the surface charges (–22.57 mV, Figure 4b),
preventing aggregation of the polyplexes. When the P/N
ratio reached 20:1, the polyplex possessed a nearly neutral
surface charge (ꢃ1.42 mV), leading to the formation of
larger particles (ꢁ770 nm) due to aggregation. When the P/
N ratio reached 30:1, the surface charge of the polyplex
became positive (2.49 mV), and the particle size decreased
significantly (ꢁ170 nm), a result we attribute to the surface
stabilized with PEG chains promoting the separation of
aggregated particles.
4] M. J. During, Adv. Drug Delivery Rev. 1997, 27, 83.
[5] P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M.
Wenz, J. P. Northrop, G. M. Ringold, M. Danielsen, Proc. Natl.
Acad. Sci. U. S. A. 1987, 84, 7413.
[
6] I. Koltover, T. Salditt, J. O. Radler, C. R. Safinya, Science 1998,
281, 78.
[
7] R. G. Vile, A. Tuszynski, S. Castleden, Mol. Biotechnol. 1996, 5,
139.
[
[
8] J. Zabner, Adv. Drug Delivery Rev. 1997, 27, 17.
9] R. Haag, F. Kratz, Angew. Chem., Int. Ed. 2006, 45, 1198.
[
[
[
[
10] K. Kodama, Y. Katayama, Y. Shoji, H. Nakashima, Curr. Med.
Chem. 2006, 13, 2155.
11] M. J. Tiera, F. M. Winnik, J. C. Fernandes, Curr. Gene Ther. 2006,
6, 59.
12] W. H. Heath, A. F. Senyurt, J. Layman, T. E. Long, Macromol.
Chem. Phys. 2007, 208, 1243.
Conclusion
13] P. Chollet, C. Favrot Marie, A. Hurbin, J.-L. Coll, J. Gene. Med.
2
002, 4, 84.
We have described a straightforward methodology to
synthesize new hyperbranched bio-degradable PEG-
PDMAEMA copolymers via RAFT polymerization. The
positively charged, hyperbranched polymer core is covered
by PEG chains, masking the positive charge and reducing
the toxicity of the polymer. The polymeric structures are
inherently biodegradable producing oligomers with nar-
row dispersity chain lengths on reduction. This makes it
possible to optimize the synthetic protocol to minimize the
toxicity of the oligomers during their excretion phase.
Cleavage tests under reducing condition confirmed that the
branched chains were well-defined (consistent with RAFT
control). This design strategy for shielded cationic polymers
yields DNA polyplexes via multivalent electrostatic inter-
actions, enabling their use as non-cytotoxic gene delivery
agents.
[14] R. Kircheis, S. Schuller, S. Brunner, M. Ogris, K.-H. Heider, W.
Zauner, E. Wagner, J. Gene Med. 1999, 1, 111.
[
[
15] J. W. Hong, J. H. Park, K. M. Huh, H. Chung, I. C. Kwon, S. Y.
Jeong, J. Controlled Release 2004, 99, 167.
16] A. Kichler, M. Chillon, C. Leborgne, O. Danos, B. Frisch,
J. Controlled Release 2002, 81, 379.
[17] M. Ogris, G. Walker, T. Blessing, R. Kircheis, M. Wolschek, E.
Wagner, J. Controlled Release 2003, 91, 173.
[
18] Y. Kakizawa, A. Harada, K. Kataoka, J. Am. Chem. Soc. 1999,
121, 11247.
[
19] Y.-b. Lim, Y. H. Choi, J.-s. Park, J. Am. Chem. Soc. 1999, 121,
5633.
[20] Y.-b. Lim, C.-h. Kim, K. Kim, S. W. Kim, J.-s. Park, J. Am. Chem.
Soc. 2000, 122, 6524.
[
21] Y.-b. Lim, S.-M. Kim, Y. Lee, W.-k. Lee, T.-g. Yang, M.-j. Lee,
H. Suh, J.-s. Park, J. Am. Chem. Soc. 2001, 123, 2460.
22] G. Saito, J. A. Swanson, K.-D. Lee, Adv. Drug Delivery Rev. 2003,
55, 199.
[
[23] C.-H. Ahn, S. Y. Chae, Y. H. Bae, S. W. Kim, J. Controlled Release
2004, 97, 567.
[
24] D. Fischer, T. Bieber, Y. Li, H.-P. Elsasser, T. Kissel, Pharm. Res.
1999, 16, 1273.
Acknowledgements: T. P. D. thanks Australian Research Council
for a Federation Fellowship.
[25] M. Kraemer, J.-F. Stumbe, G. Grimm, B. Kaufmann, U. Krueger,
M. Weber, R. Haag, Chem. Bio. Chem. 2004, 5, 1081.
[26] M. L. Forrest, J. T. Koerber, D. W. Pack, Bioconjugate Chem.
2003, 14, 934.
Received: October 16, 2009; Published online: February 26, 2010;
DOI: 10.1002/mabi.200900378
Macromol. Biosci. 2010, 10, 632–637
636
ß 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DOI: 10.1002/mabi.200900378