A R T I C L E S
Heintzelman et al.
the 4.0 Hz C-7,8 proton-proton coupling constant. The absolute
configuration for this metabolite was not determined at the time
on the natural material but was recently established to be as
shown via enantioselective total synthesis by White and
Hansen.5
Production of these toxins by cyanobacteria in drinking water
is clearly a serious public health problem, particularly in tropical
areas, and has recently been traced to the deaths of livestock in
Australia. Thus, considerable work continues to appear on
development of analytical methods for measuring cylindrosper-
1
4
1
3,15
It has become clear that the occurrence of cylindrospermop-
sin-producing cyanobacteria is widespread in temperate as well
as tropical and subtropical areas. For example, in 1994, Harada
et al. isolated cylindrospermopsin from the alga Umezakia
mopsin levels in water
destroying the compounds in situ.
Due to the fascinating and unusual structures of 1 and 2, as
as well as methodology for potentially
1
6
1
7
6,18,19
well as their significance in public health, we and others
6
natans collected in Lake Mikata (Fukui, Japan). More recently,
have undertaken studies on the synthesis of these hepatotoxins.
Snider has recently reported a total synthesis of racemic
this same toxin was isolated from another cyanobacterium,
Aphanizomenon oValisporum (Forti), found in Lake Kinneret
1
8c
cylindrospermopsin. Although the Snider group’s synthetic
material in fact corresponded to natural cylindrospermopsin, it
was not possible to conclusively establish the C-7 stereochem-
istry of any of their intermediates, and therefore the work did
not independently confirm the original assignment for this
center. In 2001 we described in preliminary form a total syn-
thesis that completely controls all six stereogenic centers of
the putative cylindrospermopsin structure 1, and which proves
conclusively that the stereochemical assignments at C-7 in fact
have been reversed in cylindrospermopsin and the 7-epi
(
Sea of Galilee), a major source of fresh drinking water in
7
Israel. A. oValisporum strains which produce cylindrospermop-
sin have also been identified in Australia. In addition, C.
raciborskii has been found in Europe, Brazil, and the United
8
States. Further investigation of the Israel cyanobacterium led
to the isolation of a second, minor metabolite with toxicity
9
similar to that of cylindrospermopsin. This compound was
assigned the 7-epicylindrospermopsin structure 2, once again
mainly based upon NMR evidence. The C-7,8 coupling constant
of 6.8 Hz for this compound was rationalized by a hydrogen-
bonded conformation 2a, as was proposed for cylindrosper-
mopsin. Finally, a third metabolite, 7-deoxycylindrospermopsin
1
7a
compound. In this paper we now provide the full details of
this work.
Synthetic Plan
(
3), has been isolated from C. raciborskii and interestingly was
10,11
found to be nontoxic to mice.
Several years ago we devised a strategy for synthesis of
cylindrospermopsin based upon a novel variation of N-sulfinyl
dienophile Diels-Alder methodology that we had previously
2
0
developed. We recognized that the C-7,8 relationship in
structure 1 is that of a syn-vicinal amino alcohol derivative of
the type we could access from a stereospecific N-sulfinyl Diels-
Alder reaction of an (E,E)-diene to form a dihydrothiazine oxide,
followed by a stereospecific Grignard ring opening/[2,3]-
(
10) Norris, R. L.; Eaglesham, G. K.; Pierens, G.; Shaw, G. R.; Smith, M. J.;
Chiswell, R. K.; Seawright, A. A.; Moore, M. R. EnViron. Toxicol. 1999,
14, 163.
(
11) There have been some limited structure-activity relationship studies in
this area: (a) Banker, R.; Carmeli, S.; Werman, M.; Telsch, B.; Porat, R.;
Sukenik, A. J. Toxicol. EnViron. Health 2001, 62, 281. (b) Runnegar, M.
T.; Xie, C.; Snider, B. B.; Wallace, G. A.; Weinreb, S. M.; Kuhlenkamp,
J. Toxicol. Sci. 2002, in press.
(
12) Runnegar, M. T.; Kong, S.-M.; Zhong, Y.-Z.; Ge, J.-L.; Lu, S. C. Biochem.
Biophys. Res. Commun. 1994, 201, 235. Runnegar, M. T.; Kong, S.-M.;
Zhong, Y.-Z.; Lu, S. C. Biochem. Pharmacol. 1995, 49, 219.
(
(
(
13) Froscio, S. M.; Humpage, A. R.; Burcham, P. C.; Falconer, I. R. EnViron.
Toxicol. 2001, 16, 408 and references cited therein.
14) Saker, M. L.; Thomas, A. D.; Norton, J. H. EnViron. Toxicol. 1999, 14,
179.
15) See for example: Eaglesham, G. K.; Norris, R. L. G.; Shaw, G. R.; Smith,
M. J.; Chiswell, R. K.; Davis, B. C.; Neville, G. R.; Seawright, A. A.;
Moore, M. R. EnViron. Toxicol. 1999, 14, 151. Norris, R. L. G.; Eaglesham,
G. K.; Shaw, G. R.; Senogles, P.; Chiswell, R. K.; Smith, M. J.; Davis, B.
C.; Seawright, A. A.; Moore, M. R. EnViron. Toxicol. 2001, 16, 391.
16) Chiswell, R. K.; Shaw, G. R.; Eaglesham, G.; Smith, M. J.; Norris, R. L.;
Seawright, A. A.; Moore, M. R. EnViron. Toxicol. 1999, 14, 155. Senogles,
P.; Shaw, G.; Smith, M.; Norris, R.; Chiswell, R.; Mueller, J.; Sadler, R.;
Eaglesham, G. Toxicon 2000, 38, 1203.
(
(
17) For a preliminary account of portions of this work see: (a) Heintzelman,
G. R.; Fang, W.-K.; Keen, S. P.; Wallace, G. A.; Weinreb, S. M. J. Am.
Chem. Soc. 2001, 123, 8851. See also: (b) Heintzelman, G. R.; Parvez,
M.; Weinreb, S. M. Synlett 1993, 551. (c) Heintzelman, G. R.; Weinreb,
S. M.; Parvez, M. J. Org. Chem. 1996, 61, 4594. (d) Keen, S. P.; Weinreb,
S. M. Tetrahedron Lett. 2000, 41, 4307.
It has been postulated that cylindrospermopsin probably exerts
its toxic effects by inhibiting biosynthesis of cell-reduced
glutathione11b,12
and also by inhibition of protein synthesis.13
(
5) White, J. D.; Hansen, J. D. Submitted for publication.
(18) (a) Snider, B. B.; Harvey, T. C. Tetrahedron Lett. 1995, 36, 4587. (b) Snider,
B. B.; Xie, C. Tetrahedron Lett. 1998, 39, 7021. (c) Xie, C.; Runnegar, M.
T. C.; Snider, B. B. J. Am. Chem. Soc. 2000, 122, 5017. (d) McAlpine, I.
J.; Armstrong, R. W. Tetrahedron Lett. 2000, 41, 1849. (e) White, J. D.;
Hansen, J. D. Abstracts of Papers; 219th National Meeting of the American
Chemical Society, San Francisco, CA; American Chemical SOciety:
Washington, DC, 2000; ORGN 812. (f) Djung, J. F.; Hart, D. J.; Young,
E. R. R. J. Org. Chem. 2000, 65, 5668. (g) Looper, R. E.; Williams, R. M.
Tetrahedron Lett. 2001, 42, 769.
(
6) (a) Harada, K.; Ohtani, I.; Iwamoto, K.; Suzuki, M.; Watanabe, M. F.;
Watanabe, M.; Terav, K. Toxicon 1994, 32, 73. (b) Terav, K.; Ohmori, S.;
Igarashi, K.; Ohtani, I.; Watanabe, M. F.; Harada, K. I.; Ito, E.; Watanabe,
M. Toxicon 1994, 32, 833 and references cited therein.
(
(
(
7) Banker, R.; Carmeli, S.; Hadas, O.; Teltsch, B.; Porat, R.; Sukenik, A. J.
Phycol. 1997, 33, 613.
8) For lead references see: Schembri, M. A.; Neilan, B. A.; Saint, C. P.
EnViron. Toxicol. 2001, 16, 413.
9) Banker, R.; Teltsch, B.; Sukenik, A.; Carmeli, S. J. Nat. Prod. 2000, 63,
(19) Synthetic work in this area has recently been reviewed: Murphy, P. J.;
Thomas, C. W. Chem. Soc. ReV. 2001, 30, 303.
3
87.
3940 J. AM. CHEM. SOC.
9
VOL. 124, NO. 15, 2002