36
K. Kozyra et al. / Journal of Molecular Catalysis B: Enzymatic 91 (2013) 32–36
that, despite other explanations, unstable oxoaminophosphonates
(deamination step products) split and served as inorganic source of
phosphorus atom for living cells and as a consequence any trace of
phosphorus was recorded.
[13] A.B. Smith, K.M. Yager, C.M. Taylor, J. Am. Chem. Soc. 117 (1995) 10879–10888.
[14] E. Zyman´ czyk-Duda, Phosphorus Sulfur Silicon Relat. Elem. 183 (2008)
˙
369–382.
[15] R.N. Patel, Enzyme Microb. Technol. 31 (2002) 804–826.
[16] M. Brzezin´ ska-Rodak, Adv. Stud. Biol. 1 (2009) 243–254.
[17] A.J.J. Straathof, S. Panke, A. Schmid, Curr. Opin. Biotechnol. 13 (2002) 548–556.
[18] J. Oleksyszyn, R. Tyka, Tetrahedron Lett. 32 (1977) 2823–2824.
[19] R. Tyka, J. Oleksyszyn, Sposób otrzymywania kwasów ␣-aminofosfonowych,
Patent tymczasowy dodatkowy, Zgłoszenie P. 196275.
[20] G. Forlani, M. Klimek-Ochab, J. Jaworski, B. Lejczak, A.M. Picco, Mycol. Res. 110
(2006) 1455–1463.
4. Conclusions
Assuming, this article reports for the first time protocols allowed
obtaining pure enantiomers of ␣-aminophosphonic acids by apply-
ing whole-cell biocatalysts. Presented method is relatively simple
and very efficient. It allows resolving racemic mixtures of phospos-
phonic acid analogs of valine, phenylalanine and phenylglycine.
Described procedure seems to be promising for scaling up and
further application as an interesting alternative for asymmetric
synthesis. Presented results constituted very important input in
the chemoenzymatic synthesis of chiral phosphonates derivatives
of biological importance.
[21] M. Wakayama, Y. Takeuchi, K. Tasaka, K. Sakai, M. Moriguchi, J. Ferment. Bioeng.
82 (1996) 177–179.
˙
[22] M. Klimek-Ochab, E. Zyman´ czyk-Duda, M. Brzezin´ ska-Rodak, P. Majewska, B.
Lejczak, Tetrahedron: Asymmetry 19 (2008) 450–453.
[23] M. Gabler, L. Fischer, Appl. Environ. Microbiol. 65 (1999) 3750–3753.
[24] Ł. Berlicki, E. Rudzin´ ska, P. Kafarski, Tetrahedron: Asymmetry 14 (2003)
1535–1539.
[25] R. Hamilton, B. Walker, B.J. Walker, Tetrahedron Lett. 36 (1995) 4451–4454.
[26] H. Gröger, B. Hammer, Chemistry 6 (2000) 943–948.
[27] D. Pettersen, M. Marcolini, L. Bernardi, F. Fini, R.P. Herrera, V. Sgarzani, A. Ricci,
J. Org. Chem. 71 (2006) 6269–6272.
[28] M. Mikołajczyk, P. Łyz˙ wa, J. Drabowicz, Tetrahedron: Asymmetry 8 (1997)
3991–3994.
Acknowledgements
[29] M. Ordón˜ez, J.L. Viveros-Ceballos, C. Cativiela, A. Arizpe, Curr. Org. Synth. 9
(2012) 310–341.
[30] G.D. Joly, E.N. Jacobsen, J. Am. Chem. Soc. 126 (2004) 4102–4103.
[31] Q. Chen, C. Yuan, Synthesis: Stuttgart 24 (2007) 3779–3786.
[32] J.P. Abell, H. Yamamoto, J. Am. Chem. Soc. 130 (2008) 10521–10523.
[33] K.E. Metlushka, B.A. Kashemirov, V.F. Zheltukhin, D.N. Sadkova, B. Büchner,
C. Hess, O.N. Kataeva, C.E. McKenna, V.A. Alfonsov, Chemistry 15 (2009)
6718–6722.
This work was financed from project “Biotransformations
for pharmaceutical and cosmetics industry” No. POIG.01.03.01-
00-158/09-07 part-financed by the European Union within the
European Regional Development Fund for the Innovative Economy.
[34] D. Zhao, Y. Wang, L. Mao, R. Wang, Chemistry 15 (2009) 10983–10987.
[35] M. Ohara, S. Nakamura, N. Shibata, Adv. Synth. Catal. 353 (2011) 3285–3289.
[36] H.K. Chenault, J. Dahmer, G.M. Whitesides, J. Am. Chem. Soc. 111 (1989)
6354–6364.
References
[1] B. Lejczak, P. Kafarski, Top. Heterocycl. Chem. 20 (2009) 31–63.
[2] G.S. Prasad, J.R. Krishna, M. Manjunath, O.V.S. Reddy, M. Krishnaiah, C.S. Reddy,
V.G. Puranik, ARKIVOC 13 (2007) 133–141.
[3] E. Naydenova, K. Troev, M. Topashka-Ancheva, G. Hägele, I. Ivanov, A. Kril,
Amino Acids 33 (2007) 695–702.
[4] Z.H. Kudzin, D.K. Gralak, G. Andrijewski, J. Drabowicz, J. Łuczak, J. Chromatogr.
A 998 (2003) 183–199.
[5] P. Kafarski, B. Lejczak, Curr. Med. Chem. Anticancer Agents 1 (2001) 301–312.
[6] M. Ordón˜ez, H. Rojas-Cabrera, C. Cativiela, Tetrahedron 65 (2009) 17–49.
[7] E. Naydenowa, M. Topashka-Ancheva, P. Todorov, T. Yordanova, K. Troev,
Bioorg. Med. Chem. 14 (2006) 2190–2196.
[8] E.D. Naydenova, P.T. Todorov, K.D. Troev, Amino Acids 38 (2010) 23–30.
[9] E.D. Naydenova, P.T. Todorov, M.N. Topashka-Ancheva, G.T. Momekov, T.Z. Yor-
danova, S.M. Konstantinov, K.D. Troev, Eur. J. Med. Chem. 43 (2008) 1199–1205.
[10] Y. Xu, K. Yan, B. Song, G. Xu, S. Yang, W. Xue, D. Hu, P. Lu, G. Ouyang, L. Jin, Z.
Chen, Molecules 11 (2006) 666–676.
[11] Z.H. Kudzin, M.H. Kudzin, J. Drabowicz, C.V. Stevens, Curr. Org. Chem. 15 (2011)
2015–2071.
[12] H.B. Maruyama, M. Arisawa, T. Sawada, Antimicrob. Agents Chemother. 16
(1979) 444–451.
[37] V.A. Solodenko, T.N. Kasheva, V.P. Kukhar, E.V. Kozlova, D.A. Mironenko, V.K.
ˇ
Svedas, Tetrahedron 47 (1991) 3989–3998.
[38] B. Bujacz, P. Wieczorek, T. Krzys´ko-Łupicka, Z. Goła˛b, B. Lejczak, P. Kafarski,
Appl. Environ. Microbiol. 61 (1995) 2905–2910.
[39] J. Lipok, D. Wieczorek, M. Jewgin´ ski, P. Kafarski, Enzyme Microb. Technol. 44
(2009) 11–16.
˙
[40] M. Brzezin´ ska-Rodak, M. Klimek-Ochab, E. Zyman´ czyk-Duda, P. Kafarski,
Molecules 16 (2011) 5896–5904.
[41] P.D. Pawelek, J. Cheah, R. Coulombe, P. Macheroux, S. Ghisla, A. Vrielink, EMBO
J. 19 (2000) 4204–4215.
[42] L. Pollegioni, K. Diederichs, G. Molla, S. Umhau, W. Welte, S. Ghisla, M.S. Pilone,
J. Mol. Biol. 324 (2002) 535–546.
[43] L. Pollegioni, G. Molla, S. Sacchi, E. Rosini, R. Verga, M.S. Pilone, Appl. Microbiol.
Biotechnol. 78 (2008) 1–16.
[44] E.M. Trost, L. Fischer, J. Mol. Catal. B: Enzym. 19–20 (2002) 189–195.
[45] M.S. Pilone, L. Pollegioni, Biocatal. Biotransform. 20 (2002) 145–159.
[46] A. Caligiuri, P. D’Arrigo, E. Rosini, G. Pedrocchi-Fantoni, D. Tessaro, G. Molla, S.
Servi, L. Pollegioni, J. Mol. Catal. B: Enzym. 50 (2008) 93–98.