10.1002/anie.201711876
Angewandte Chemie International Edition
COMMUNICATION
[11] Selected recent examples: a) R. Hayashi, A. Shimizu, J. I. Yoshida, J.
Am. Chem. Soc. 2016, 138, 8400–8403; b) B. Johnson, R. Francke, R.
D. Little, L. A. Berben, Chem. Sci. 2017, 8, 6493–6498; c) E. J. Horn, B.
R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran,
Nature 2016, 533, 77–81; d) Q.-Q. Wang, K. Xu, Y.-Y. Jiang, Y.-G. Liu,
B.-G. Sun, C.-C. Zeng, Org. Lett. 2017, 19, 5517-5520; e) Q. L. Yang, Y.
Q. Li, C. Ma, P. Fang, X. J. Zhang, T. S. Mei, J. Am. Chem. Soc. 2017,
139, 3293–3298; f) P. Wang, S. Tang, P. Huang, A. Lei, Angew. Chem.
Int. Ed. 2017, 56, 3009–3013; Angew. Chem. 2017, 129, 3055–3059; g)
L. Schulz, M. Enders, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke,
S. R. Waldvogel, Angew. Chem. Int. Ed. 2017, 56, 4877–4881; Angew.
Chem. 2017, 129, 4955–4959; h) A. J. J. Lennox, J. E. Nutting, S. S.
Stahl, Chem. Sci. 2018, DOI: 10.1039/C7SC04032F; i) N. Fu, G. S.
Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357, 575–579.
alkynes that is applicable to the synthesis of a host of imidazo-
fused N-heteroaromatics. This electrosynthesis is enabled by the
development of a tetraarylhydrazine as the catalyst to generate
the amidyl radicals and by uncovering novel reactivities of N- and
C-centered radicals for C–N bond formation.
Acknowledgements
Financial
support
of
this
research
from
MOST
(2016YFA0204100), NSFC (No. 21402164, 21672178).
[12] a) T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller, S. R. Waldvogel,
J. Am. Chem. Soc. 2017, 139, 12317–12324; b) T. Gieshoff, D.
Schollmeyer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 9437–
9440; Angew. Chem. 2016, 128, 9587–9590; c) H.-C. Xu, J. M. Campbell,
K. D. Moeller, J. Org. Chem. 2014, 79, 379–391.
Keywords: electrochemistry • heterocycles • radical • annulation
• alkyne
[1]
[2]
E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257–
10274.
[13] Selected recent examples of organocatalyzed organic electrosynthesis:
a) C.-C. Zeng, N.-T. Zhang, C. M. Lam, R. D. Little, Org. Lett. 2012, 14,
1314-1317; b) P. Röse, S. Emge, C. A. König, G. Hilt, Adv. Synth. Catal.
2017, 359, 1359; c) X.-Y. Qian, S.-Q. Li, J. Song, H.-C. Xu, ACS Catal.
2017, 7, 2730-2734.
a) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603–1618; b) J. R. Chen, X.
Q. Hu, L. Q. Lu, W. J. Xiao, Chem. Soc. Rev. 2016, 45, 2044–2056; c)
M. D. Kärkäs, ACS Catal. 2017, 7, 4999–5022.
[3]
Selective recent examples: a) J. Davies, T. D. Svejstrup, D. F. Reina, N.
S. Sheikh, D. Leonori, J. Am. Chem. Soc. 2016, 138, 8092–8095; b) D.
C. Miller, G. J. Choi, H. S. Orbe, R. R. Knowles, J. Am. Chem. Soc. 2015,
137, 13492–13495; c) X. Q. Hu, X. T. Qi, J. R. Chen, Q. Q. Zhao, Q. Wei,
Y. Lan, W. J. Xiao, Nat. Commun. 2016, 7, 11188; d) J. C. Walton, Acc.
Chem. Res. 2014, 47, 1406–1416; e) Z. Li, L. Song, C. Li, J. Am. Chem.
Soc. 2013, 135, 4640–4643; f) P. Xiong, H.-H. Xu, H.-C. Xu, J. Am. Chem.
Soc. 2017, 139, 2956–2959; g) L. Zhu, P. Xiong, Z. Y. Mao, Y. H. Wang,
X. Yan, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226–2229;
Angew. Chem. 2016, 128, 2266–2269.
[4]
a) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino, C. Nevado,
J. Am. Chem. Soc. 2015, 137, 964–973; b) Z. W. Hou, Z. Y. Mao, H. B.
Zhao, Y. Y. Melcamu, X. Lu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed.
2016, 55, 9168–9172; Angew. Chem. 2016, 128, 9314–9318; c) Z.-W.
Hou, Z.-Y. Mao, J. Song, H.-C. Xu, ACS Catal. 2017, 7, 5810–5813; d)
D. F. Reina, E. M. Dauncey, S. P. Morcillo, T. D. Svejstrup, M. V.
Popescu, J. J. Douglas, N. S. Sheikh, D. Leonori, Eur. J. Org. Chem.
2017, 2108–2111; e) X.-X. Peng, D. Wei, W.-J. Han, F. Chen, W. Yu, B.
Han, ACS Catal. 2017, 7, 7830–7834.
[5]
[6]
R. Ramesh, Y. Chandrasekaran, R. Megha, S. Chandrasekaran,
Tetrahedron 2007, 63, 9153–9162.
a) C. T. Falzon, I. Ryu, C. H. Schiesser, Chem. Commun. 2002, 2338–
2339; b) S. Tang, K. Liu, Y. Long, X. L. Gao, M. Gao, A. W. Lei, Org. Lett.
2015, 17, 2404-2407; c) M. El Qacemi, L. Ricard, S. Z. Zard, Chem.
Commun. 2006, 4422–4424; d) H. Ishibashi, T. Sato, M. Ikeda, Synthesis
2002, 695-713; e) G. K. Friestad, Tetrahedron 2001, 57, 5461-5496.
a) I. Ryu, S. Ogura, S. Minakata, M. Komatsu, Tetrahedron Lett. 1999,
40, 1515–1518; b) D. C. Harrowven, B. J. Sutton, S. Coulton,
Tetrahedron Lett. 2001, 42, 9061–9064; c) J. Xie, P. Xu, H. M. Li, Q. C.
Xue, H. M. Jin, Y. X. Cheng, C. J. Zhu, Chem. Commun. 2013, 49, 5672–
5674.
[7]
[8]
[9]
A. K. Bagdi, S. Santra, K. Monir, A. Hajra, Chem. Commun. 2015, 51,
1555–1575.
a) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han, A. Lei, Chem. Commun.
2012, 48, 11073–11075; b) J. Zeng, Y. J. Tan, M. L. Leow, X. W. Liu,
Org. Lett. 2012, 14, 4386–4389; c) Y. Gao, M. Yin, W. Wu, H. Huang, H.
Jiang, Adv. Synth. Catal. 2013, 355, 2263–2273.
[10] Selected recent reviews on electroorganic synthesis: a) R. Francke, R.
D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521; b) J. Yoshida, K.
Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265–2299;
c) H. J. Schäfer, C. R. Chim. 2011, 14, 745–765; d) M. Yan, Y. Kawamata,
P. S. Baran, Chem. Rev. 2017, 117, 13230–13319; e) Y. Jiang, K. Xu, C.
Zeng, Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.7b00271.
This article is protected by copyright. All rights reserved.