Biomacromolecules
ARTICLE
’
AUTHOR INFORMATION
Corresponding Author
*
Fax: 34-981547148. E-mail: carmen.alvarez.lorenzo@usc.es.
’
ACKNOWLEDGMENT
Work supported by MICINN (SAF2008-01679) and FEDER
Spain) and Funda c- ~a o para Ci ^e ncia e Tecnologia (FCT, Praxis
(
grant SFRH/BD/40947/2007, Portugal). We thank C. Fern ꢀa ndez
Masaguer and J. Gonz ꢀa lez Parga for their help with the
synthesis of 4VI and A. Rey-Rico for help with the cytocompat-
ibility tests.
’
REFERENCES
(
1) Fechtner, R. D.; Godfrey, D. G.; Budenz, D.; Stewart, J. A.;
Stewart, W. C.; Jasek, M. C. Cornea 2010, 29, 618–621.
2) Bock, R.; Meier, J.; Nyul, L. G.; Hornegger, J.; Michelson, G.
Med. Image Anal. 2010, 14, 471–481.
3) Grieshaber, M. C.; Pienaar, A.; Olivier, J.; Stegmann, R. Invest.
(
(
Ophthalmol. Visual Sci. 2009, 51, 1498–1504.
Figure 7. ETOX release profiles in 0.9% NaCl medium from pHEMA
hydrogels containing diverse functional comonomers. Continuous and
dotted lines correspond to nonimprinted and ACT-imprinted networks.
Codes as in Table 1. The insert shows data used for the fitting to the
square-root kinetics.
(4) Tsai, J. C.; Kanner, E. M. Expert Opin. Emerging Drugs 2005, 10,
109–118.
(5) Urtti, A. Adv. Drug Delivery Rev. 2006, 58, 1131–1135.
(6) Leino, M.; Urtti, A. Recent Developments in Anti-Glaucoma
Drug Research. In Ocular Therapeutics and Drug Delivery; Reddy, I. K.,
Ed.; Technomic Publishing Co., Inc.: Lancaster PA, 1996, pp 245-257.
(7) Wajs, G.; Meslard, J. C. Crit. Rev. Ther. Drug Carrier Syst. 1986, 2,
limited to 5 mL to resemble the small volume of lachrymal fluid that
could be available on the cornea for the release of the drug from a
medicated SCL. The release data obtained in the first 48 h were
fitted to the square-root kinetics (Table 4). Hydrogels 0, A, and B
behaved very similar probably because of the fact that unspecific
hydrophobic interactions drive the binding of the drug to the
network and small differences in mesh size are less relevant for
drug diffusion than in the case of the water-soluble ACT. The most
biomimetic hydrogels (formulations E, F, I, and J) sustained better
the release highlighting the role of an adequate combination of
functional groups in the ability of the hydrogels to host the drug with
high affinity and to regulate its release rate. Differences in ETOX
loading/release between ACT-imprinted and nonimprinted hydro-
gels were minor and did not follow a clear trend.
2
75–289.
8) Alvarez-Lorenzo, C.; Hiratani, H.; Concheiro, A. Am. J. Drug
Delivery 2006, 4, 131–151.
9) Xinming, L.; Yingde, C.; Lloyd, A. W.; Mikhalovsky, S. V.;
Sandeman, S. R.; Howel, C. A.; Liewen, L. Contact Lens Anterior Eye
008, 31, 57–64.
10) Alvarez-Lorenzo, C.; Ya ~n ez, F.; Concheiro, A. J. Drug Delivery
(
(
2
(
Sci. Technol. 2010, 20, 237–248.
(11) White, C. J.; Byrne, M. E. Expert Opin. Drug Delivery 2010, 7,
765–780.
(12) Karlgard, C. C.; Wong, N. S.; Jones, L. W.; Moresoli, C. Int.
J. Pharm. 2003, 257, 141–151.
(13) Boone, A.; Hui, A.; Jones, L. Eye Contact Lens 2009, 35, 260–
267.
(14) Anne, D.; Heïdi, B.; Yves, M.; Patrick, V. J. Biomed. Mater. Res.
2
007, 82A, 41–51.
(
15) Gulsen, D.; Chauhan, A. Int. J. Pharm. 2005, 292, 95–117.
’
CONCLUSIONS
(16) Gulsen, D.; Li, C. C.; Chauhan, A. Curr. Eye Res. 2005, 30,
The knowledge of the physiological receptors with which
1
071–1080.
drugs interact to exert the therapeutic effect has been used so far
for the chemical optimization of the drugs or the search of new
candidates with improved pharmacological efficacy and safety.
Although still few, previous works have suggested that the
structure of the physiological receptor can also be used as the
model to follow in the design of optimized drug delivery
(
17) Kapoor, Y.; Chauhan, A. Int. J. Pharm. 2008, 361, 222–229.
(18) Miranda, M. N.; Garcia-Castineiras, S. CLAO J. 1983, 9, 43–48.
(19) Takao, S.; Rei, U.; Haruyasu, T.; Kenji, U.; Akira, M. J. Appl.
Polym. Sci. 2005, 98, 731–735.
(20) dos Santos, J. F.; Couceiro, R.; Concheiro, A.; Torres-Labandeira,
J. J.; Alvarez-Lorenzo, C. Acta Biomater. 2008, 4, 745–755.
2
3,34,35
(
21) Alvarez-Lorenzo, C.; Concheiro, A. J. Chromatogr., B 2004, 804,
systems.
active site of CA, networks with high affinity for inhibitor drugs
CAIs) can be created. Biomimetic networks can load more drug
We have here demonstrated that mimicking the
2
31–245.
(
(
22) Hiratani, H.;Alvarez-Lorenzo, C.Biomaterials 2004, 25, 1105–1113.
23) Venkatesh, S.; Sizemore, S. P.; Byrne, M. E. Biomaterials 2007,
(
and control better drug release than conventionally synthesized
pHEMA hydrogels, being useful for the development of ad-
vanced controlled release systems. Nevertheless, aspects such as
optical transparency (for application as drug-eluting SCLs), the
effect of thickness on drug release length, and long-term dur-
ability of the biomimetic receptors (from both the point of view
of time between preparation and use and of any application that
involves loading/release cycles) require further studies to eluci-
date fully the practical potential of enzyme-mimicking networks.
2
8, 717–724.
24) Ali, M.; Horikawa, S.; Venkatesh, S.; Saha, J.; Hong, J. W.;
Byrne, M. E. J. Controlled Release 2007, 124, 154–162.
25) Alvarez-Lorenzo, C.; Yanez, F.; Barreiro-Iglesias, R.; Concheiro,
A. J. Controlled Release 2006, 113, 236–244.
26) Bergmann, N. M.;Peppas, N. A. Prog. Polym. Sci.2008, 33, 271–288.
(
(
(
(27) Kryscio, D. R.; Peppas, N. A. AIChE J. 2009, 55, 1311–1324.
(28) Hiratani, H.; Mizutani, Y.; Alvarez-Lorenzo, C. Macromol.
Biosci. 2005, 5, 728–733.
7
08
dx.doi.org/10.1021/bm101562v |Biomacromolecules 2011, 12, 701–709