5
410
I. Coldham et al. / Tetrahedron Letters 49 (2008) 5408–5410
O
CO2Me
CO2Me
NH OH·HCl
2
H
N
H
N
2
Me
O
CO Me
2
iPr NEt, PhMe
H
N
CHO
+
CO Me
CO2Me
CO2Me
2
heat, 24 h
CO Me
O
O
2
N
N
N
CO Me
2
Cl
1 (n=1)
2
1a
21b
CO Et
CO Et
CO Et
CO2Me
2
2
2
15
16
17
O
N
Scheme 7. Cyclization/cycloaddition with hydroxylamine; 77%, dr 1.6:1.
Me
O
CO Me
2
CO Me
H
N
2
H
CO Me
CO Me
2
2
N
N
In summary, we have demonstrated that various amines can be
added to the aldehydes 1 (n = 1 or 0) to generate cyclic 1,3-dipoles
that undergo intermolecular cycloaddition with activated dipol-
arophiles. The amines glycine, alanine, glycine ethyl ester and
hydroxylamine all reacted successfully. The chemistry provides
an efficient multi-component synthesis of substituted indolizi-
dines and pyrrolizidines. Further examples, including other types
of aldehyde substrates, are currently under investigation and will
be reported in due course.
CO2Et
CO2Et
CO2Et
18
19
20a
Figure 2. Structures of cycloadducts 15–20.
C9
C8
C12
C7
Acknowledgements
C10
C13
C6
N2
O2
C4
O4
We thank the Royal Society for an International Incoming
Fellowship (IIF-2007/R1), the EPSRC and AstraZeneca for support
of this work. We are grateful to Brian Taylor for NMR spectra
including NOESY experiments and Harry Adams for X-ray crystal
structure analysis (CCDC- 690593).
C3
H
O
O
C16
N
C15
C14 O3
C5
N
CO2Et
C2
Me
N1
C1
C11
15
O1
Figure 3. X-ray crystal structure of the major isomer of compound 15.
References and notes
1.
‘Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward
Heterocycles and Natural Products’, Padwa, A.; Pearson, W. H., Eds.; Wiley:
New York, 2003.
(
separable) were obtained. The major stereoisomer was crystalline,
and X-ray crystal structure analysis revealed that the product was
the stereoisomer shown in Figure 3. This is the endo adduct from
the S-shaped ylide, although two other stereoisomers were formed
in similar amounts.
2. Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2873.
3.
4.
5.
Nájera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105.
Kanemasa, S. Synlett 2002, 1371.
Karlsson, S.; Högberg, H.-E. Org. Prep. Proced. Int. 2001, 33, 103.
6. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
7.
8.
9.
Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 1125.
Bakthadoss, M.; Sivakumar, N.; Sivakumar, G.; Murugan, G. Tetrahedron Lett.
2008, 49, 820.
The major isomer 17 in the cycloaddition with methyl acrylate
1
was separable, and H NMR spectroscopy suggested that it was the
2
,4-diester regiochemistry resulting from endo addition. To avoid
1
1
1
0. Meng, L.; Fettinger, J. C.; Kurth, M. J. Org. Lett. 2007, 9, 5055.
1. Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Org. Lett. 2007, 9, 4223.
2. Bobeck, D. R.; Warner, D. L.; Vedejs, E. J. Org. Chem. 2007, 72, 8506.
products from conjugate addition, cycloaddition with dimethyl
acetylene dicarboxylate (DMAD) was best carried out by heating
the aldehyde 1, n = 1, with glycine ethyl ester at 60 °C for 2 h then
cooling to room temperature and addition of DMAD. This gave the
dihydropyrrole product 18 as a single stereoisomer (determined by
13. Warner, D. L.; Hibberd, A. M.; Kalman, M.; Klapars, A.; Vedejs, E. J. Org. Chem.
007, 72, 8519.
2
14. Shieh, W.-C.; Chen, G.-P.; Xue, S.; McKenna, J.; Jiang, X.; Prasad, K.; Repic, O.
Org. Process Res. Dev. 2007, 11, 711.
15. Bashiardes, G.; Safir, I.; Barbot, F. Synlett 2007, 1707.
16. Pearson, W. H.; Kropf, J. E.; Choy, A. L.; Lee, I. Y.; Kampf, J. W. J. Org. Chem. 2007,
1
H NMR NOESY). Cycloadditions to give the pyrrolizidine ring sys-
tems 19 and 20 were particularly selective in favour of one major
stereoisomer (Table 2, n = 0). In line with the previous examples,
the major isomer for compound 20 was found (by H NMR NOESY)
7
2, 4135.
1
1
7. Badarinarayana, V.; Lovely, C. J. Tetrahedron Lett. 2007, 48, 2607.
8. Bélanger, G.; April, M.; Dauphin, E.; Roy, S. J. Org. Chem. 2007, 72, 1104.
1
to arise from the S-shaped ylide and endo preference (structure
19. Pospisil, J.; Potacek, M. Tetrahedron 2007, 63, 337.
2
0. Coldham, I.; Dobson, B. C.; Fletcher, S. R.; Franklin, A. I. Eur. J. Org. Chem. 2007,
676.
2
0a). Separation of the isomers was possible by column chroma-
2
tography, and compound 20a was isolated in 52% yield.
21. Coldham, I.; Dobson, B. C.; Franklin, A. I.; Fletcher, S. R. Tetrahedron Lett. 2007,
48, 873.
In addition to the above, we have carried out the cyclization/
cycloaddition sequence using hydroxylamine. This gives the inter-
mediate oxime and, after cyclization, the nitrone. Intermolecular
dipolar cycloaddition of 1 (n = 1) with dimethyl maleate gave the
cycloadducts 21 (Scheme 7). The stereoisomers were separable,
2
2
2. Coldham, I.; Pih, S. M.; Rabot, R. Synlett 2005, 1743.
3. Coldham, I.; Crapnell, K. M.; Fernàndez, J.-C.; Moseley, J. D.; Rabot, R. J. Org.
Chem. 2002, 67, 6181.
24. Coldham, I.; Crapnell, K. M.; Moseley, J. D.; Rabot, R. J. Chem. Soc., Perkin Trans. 1
001, 1758.
25. Pearson, W. H.; Stoy, P.; Mi, Y. J. Org. Chem. 2004, 69, 1919.
2
1
and H NMR NOESY indicated that the major stereoisomer was
26. Coldham, I.; Burrell, A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem., Int.
compound 21a (the expected endo adduct).
Ed. 2007, 46, 6159.