10.1002/anie.202015597
Angewandte Chemie International Edition
COMMUNICATION
[3]
Q. Zhao, J. W. C. Dunlop, X. Qiu, F. Huang, Z. Zhang, J. Heyda, J.
Dzubiella, M. Antonietti, J. Yuan. Nat. Commun. 2014, 5, 4293.
L. Yang, X. Tan, Z. Wang, X. Zhang. Chem. Rev. 2015, 115, 7196–7239.
X. Ma, Y. Zhao. Chem. Rev. 2015, 115, 7794–7839.
more reversible compared with that of macrocycle 2 or 3.
Therefore, the light-controlled encapsulation and release of guest
molecules based on 1 was more effective. After photoirradiation
[4]
[5]
[6]
[7]
[8]
[9]
(365 nm) of E,E-1⸧TCNQ or E,E-1⸧terephthalonitrile,
a
Y.-W. Yang, Y.-L. Sun, N. Song. Acc. Chem. Res. 2014, 47, 1950–1960.
D.-S. Guo, Y. Liu. Chem. Soc. Rev. 2012, 41, 5907–5921.
D. S. Kim, J. L. Sessler. Chem. Soc. Rev. 2015, 44, 532–546.
J. W. Jones, L. N. Zakharov, A. L. Rheingold, H. W. Gibson. J. Am. Chem.
Soc. 2002, 124, 13378–13379.
downfield chemical shift was observed for protons on guest
molecules (Figure 3c, S40b, S43b), indicating the transformation
of E,E-1→Z,Z-1 led to the release of guest molecules from the
cavity. Next, after exposing to visible light (420 nm), the peak of
protons on guest molecules shifted upfield (Figure 3d, S40c,
S43c), demonstrating that the guest molecules were renewedly
encapsulated into the cavity of E,E-1. For E,E-2⸧TCNQ, after
photoirradiation (365 nm), TCNQ was released from the cavity of
macrocycle 2 (Figure S41b). However, after exposing to visible
light (420 nm), TCNQ was difficult to be captured into the cavity
within 30 minutes (Figure S41c). For E,E-3⸧TCNQ, the twisted
structure and steric repulsion of macrocycle 3 play an important
role in the light-controlled encapsulation and release of TCNQ,
causing that TCNQ was difficult to be released from the cavity of
macrocycle 3 after photoirradiation at 365 nm within 30 minutes
(Figure S42).
[10] B. Vinciguerra, P. Y. Zavalij, L. Isaacs. Org. Lett. 2015, 17, 5068–5071.
[11] B. Shi, K. Jie, Y. Zhou, J. Zhou, D. Xia, F. Huang. J. Am. Chem. Soc.
2016, 138, 80–83.
[12] B. Li, B. Wang, X. Huang, L. Dai, L. Cui, J. Li, X. Jia, C. Li. Angew. Chem.
Int. Ed. 2019, 58, 1–6.
[13] B. Jiang, J. Zhang, J.-Q. Ma, W. Zheng, L.-J. Chen, B. Sun, C. Li, B.-W.
Hu, H. Tan, X. Li, H.-B. Yang. J. Am. Chem. Soc. 2016, 138, 738–741.
[14] S. Guo, Y. Song, Y. He, X.-Y. Hu, L. Wang. Angew. Chem. Int. Ed. 2018,
57, 1–6.
[15] Y. Chun, N. J. Singh, I.-C. Hwang, J. W. Lee, S. U. Yu, K. S. Kim, Nat.
Commun. 2013, 4, 1797.
[16] C.-F. Chen. Chem. Commun. 2011, 47, 1674–1688.
[17] Q. Cheng, S. Li, C. Sun, L. Yue, R. Wang. Mater. Chem. Front. 2019, 3,
199–202.
In conclusion, photo-responsive azo-based macrocyclic arenes
1, 2 and 3 distinguished by the substituted positions of azo groups
were prepared via fragment cyclization reactions. Furthermore,
an ortho-position azo-macrocycle 4 was also obtained. Excitingly,
we not only got the crystal structures of E,E-1, E,E-2, E,E-3 and
E,E,E-4, but also obtained the crystal structure of Z,Z-1 upon UV
irradiation at 365 nm. In addition, azo-macrocycle E,E-1 can form
host–guest complexes with electron-deficient molecules, TCNQ
and terephthalonitrile. The encapsulation and release of guest
molecules can be controlled by photo irradiations. This work
provided a novel, straightforward and high-efficiency approach to
fabricate photo-responsive azo-macrocycles. Based on the
innovative structures, host–guest complexation and light-
responsiveness of these azo-macrocycles, we believe that they
may be widely applied in crystal engineering, biomedicine and
polymer materials and promote the development of
supramolecular chemistry.
[18] D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma, H. Tian. Chem. Rev. 2015,
115, 7543–7588.
[19] T. Ogoshi, K. Kida, T. Yamagishi, J. Am. Chem. Soc. 2012, 134, 20146–
20150.
[20] Y. Liu, C. Yu, H. Jin, B. Jiang, X. Zhu, Y. Zhou, Z. Lu, D. Yan, J. Am.
Chem. Soc. 2013, 135, 4765–4770.
[21] T. Jin, Mater. Lett. 2007, 61, 805–808.
[22] J. Xu, Y. Chen, L. Wu, C. Tung, Q. -Z. Yang, Org. Lett. 2014, 16, 684–
687.
[23] K. Iwaso, Y. Takashima, A. Harada, Nat. Chem. 2016, 8, 625–632.
[24] T. Ikeda, O. Tsutsumi. Science, 1995, 268, 1873–1875.
[25] Z. F. Liu, K. Hashimoto, A. Fujishima. Nature, 1990, 347, 658–660.
[26] S. Bellotto, S. Chen, I. R. Rebollo, H. A. Wegner, C. Heinis. J. Am. Chem.
Soc. 2014, 136, 5880–5883.
[27] A. A. Beharry, G. A. Woolley. Chem. Soc. Rev. 2011, 40, 4422–4437.
[28] A. H. Heindl, J. Becker. H. A. Wegner. Chem. Sci. 2019, 10, 7418–7425.
[29] Z. Ye, Z. Yang, L. Wang, L. Chen, Y. Cai, P. Deng, W. Feng, X. Li, L.
Yuan. Angew. Chem. Int. Ed. 2019, 58, 12519–12523.
[30] X. Chi, W. Cen, J. A. Queenan, L. Long, V. M. Lynch, N. M. Khashab, J.
L. Sessler. J. Am. Chem. Soc. 2019, 141, 6468–6472.
[31] Y. Norikane, K. Kitamoto, N. Tamaoki. J. Org. Chem. 2003, 68, 8291–
8304.
Acknowledgements
[32] J.-R. Wu, A. Mu, B. Li, C.-Y. Wang, L. Fang, Y.-W. Yang. Angew. Chem.
Int. Ed. 2018, 57, 9853–9858.
This work was supported by the National Natural Science
Foundation of China (22035006, 21702182 and 21873081),
Fundamental Research Funds for the Central Universities
(2020XZZX002-02), the State Key Laboratory of Clean Energy
Utilization (ZJUCEU2020007), China Postdoctoral Science
Foundation (2019M652056) and Zhejiang Provincial Natural
Science Foundation of China (LD21B020001). Calculations were
performed on the high-performance computing system at the
department of chemistry, Zhejiang University.
[33] H. M. D. Bandarab, S. C. Burdette. Chem. Soc. Rev. 2012, 41, 1809–
1825.
[34] S. T. J. Ryan, J. del Barrio, R. Suardíaz, D. F. Ryan, E. Rosta, O. A.
Scherman, Angew. Chem. Int. Ed. 2016, 55, 16096–16100; Angew.
Chem. 2016, 128,16330–16334.
[35] Y. Liu, P. Chen, B. Shi, T. Jiao, H. Ju, P. Liu, F. Huang. Org. Chem. Front.
2020, 7, 742–746.
Keywords: macrocycles • supramolecular chemistry • light-
responsiveness • host–guest systems • photochemistry
[1]
[2]
M. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang. Acc. Chem. Res. 2012, 45,
1294–1308.
T. Ogoshi, T. Yamagishi, Y. Nakamoto. Chem. Rev. 2016, 116, 7937–
8002.
This article is protected by copyright. All rights reserved.