1
38
C.Y. Panicker et al. / Spectrochimica Acta Part A 74 (2009) 132–139
−
1
of the out-of-plane vibrational modes at 939, 588, 509 cm (ring
[19] B. Lara, L. Gandia, A. Torres, R. Martinez-Sierra, A.G. Garcia, M.G. Lopez, Eur. J.
Pharmacol. 325 (1997) 109.
−1
II), 996, 877, 836, 780, 736, 703, 416, 158 cm (ring I) in the SERS
spectrum of the title compound suggest that there is a certain angle
between the rings and the surface of the silver particle. The substi-
tute sensitive in-plane and out-of-plane bending modes are also
detected at the same time, suggesting a tilted orientation of the
molecule [79,80].
The charge transfer mechanism of SERS can be explained by the
resonant Raman mechanism in which charge transfer excitation
from the metal to the adsorbed molecule or vice versa occurs at
the energy of the incident laser wavenumber [81,82]. The frontier
orbital theory plays a significant role in the understanding of the
charge transfer mechanism of SERS [83,84]. Two types of charge
transfer mechanisms are predicted. One is molecule to metal and
the other is metal to molecule. Molecule to metal charge transfer
excitation occurs when an electron is transferred from the high-
est occupied molecular orbital (HOMO) of the adsorbate to the
Fermi level of the metal. Conversely, transfer of an electron from the
Fermi level of the metal to the lowest unoccupied molecular orbital
[20] T. Kotani, Y. Nagaki, A. Ishii, Y. Konishi, H. Tago, S. Suehiro, N. Okukado, K.
Okamoto, J. Med. Chem. 40 (1997) 684.
[21] G. Sato, T. Chimoto, T. Aoki, S. Hosokawa, S. Sumigama, K. Tsukidate, F. Sagami,
J. Toxicol. Sci. 24 (1999) 165.
[
[
22] K. Oketani, T. Inoue, M. Murakami, Eur. J. Pharmacol. 427 (2001) 159.
23] R. Paramashivappa, P.P. Kumar, P.V. SubbaRao, A. Srinivasa Rao, Bioorg. Med.
Chem. Lett. 13 (2003) 657.
[
[
24] A.A. Nagel, D.R. Liston, S. Jung, M. Mahar, L.A. Vincent, D. Chapin, Y.L. Chen, S.
Hubbard, J.L. Ives, J. Med. Chem. 38 (1995) 1084.
25] J.H. Matthews, R. Krishnan, M.J. Costanzo, B.E. Maryanoff, A. Tulinsky, Biophys.
J. 71 (1996) 2830.
[26] R.G. Caccese, J.F. DiJoseph, J.S. Skotnicki, L.E. Borella, L.M. Adams, Agents Actions
4 (1991) 223.
3
[
27] S.K. Sohn, M.S. Chang, W.S. Choi, K.B. Kim, T.W. Woo, S.B. Lee, Y.K. Chung, Can.
J. Physiol. Pharmacol. 77 (1999) 330.
[28] M.F. Surgue, P. Gautheron, C. Schmitt, M.P. Viader, P. Conquet, R.L. Smith, N.N.
Share, C.A. Stone, J. Pharmacol. Exp. Ther. 232 (1985) 534.
[
29] C.W. Phoon, P.Y. Ng, A.E. Ting, S.L. Yeo, M.M. Sim, Bioorg. Med. Chem. Lett. 11
2001) 1647.
[30] D. Loos, E. Sidoova, V. Sutoris, Molecules 4 (1999) 81.
(
[31] S.K. Ivanov, V.S. Yuritsyn, Neftekhimiya 11 (1971) 99;
S.K. Ivanov, V.S. Yuritsyn, Chem. Abstr. 74 (1971) 12287m.
[
32] MonsantoCo, Brit. Pat. 1,106,577 (1968);
(
LUMO) results in metal to molecule charge transfer [60,83,85,86].
MonsantoCo, Chem. Abstr. 68 (1968) 96660t.
33] A. Samat, R. Guglielmetti, J. Metzger, Helv. Chim. Acta 55 (1972) 1783.
34] I. Yildiz-Oren, I. Yalcin, E. Aki-Sener, N. Ucarturk, Eur. J. Med. Chem. 39 (2004)
[
[
The theoretical results show that the HOMO, LUMO and LUMO +1
energies of the molecule are −0.308, −0.184 and −0.168 eV, respec-
tively which are energetically much lower than the Fermi level of
silver (∼ +5.48 eV) [87]. Hence, we conclude that metal to molecule
charge transfer interaction is more preferred here. The electron is
probably transferred from metal to the LUMO of the molecule.
291.
[35] A. Pinar, P. Yurdakul, I. Yildiz, O.T. Arpaci, N.L. Acan, E.A. Sener, I. Yalcin, Biochem.
Biophys. Res. Commun. 317 (2004) 670.
36] P.C. Lee, D.J. Meisel, J. Phys. Chem. 86 (1982) 3391.
37] H.I.S. Nogueira, Spectrochim. Acta 54A (1998) 1461.
[38] J.M. Aizpurua, C. Palomo, Soc. Chim. Fr. Bull. 15 (1984) 142.
[
[
[
39] K.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peterson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.J. Li, E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian03, Revision C. 02, Gaussian Inc.,
Wallingford, CT, 2004.
40] J.B. Foresman, in: E. Frisch (Ed.), Exploring Chemistry with Electronic Structure
Methods, A Guide to Using Gaussian Inc., Pittsburg, PA, 1996.
[41] P. Flukiger, H.P. Luthi, S. Portmann, J. Weber, MOLEKEL 4. 3, Swiss Center for
Scientific Computing, Manno, Switzerland, 2000–2002.
42] S. Portmann, H.P. Luthi, Chimia 54 (2000) 766.
43] I. Yalcin, E. Sener, T. Ozden, A. Akin, Eur. J. Med. Chem. 25 (1990) 705.
6
. Conclusion
The FT-IR,
FT-Raman
and
SERS
spectra
of
2-
phenoxymethylbenzothiazole were studied. The molecular
geometry and wavenumbers were calculated using the
Hartree–Fock method with 6-31G* basis set. The observed
wavenumbers were found to be in agreement with the calculated
values. Optimized geometrical parameters of the title compound
are in agreement with the reported values. It may be inferred that
for 2-phenoxymethylbenzothiazole adsorbed on silver colloid, the
molecule is adsorbed through the oxygen atom with the molecular
plane tilted on the metal surface. Analysis of the phenyl ring
modes shows that the C–C stretching mode is equally active as
strong bands in both IR and Raman spectra, and is responsible
for hyperpolarizability enhancement leading to nonlinear optical
activity.
[
[
[
[44] R. Saxena, L.D. Kandpal, G.N. Mathur, J. Polym. Sci. A: Polym. Chem. 40 (2002)
959.
3
[
45] R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectrometric Identification of Organic
Compounds, 5th ed., John Wiley and Sons, Inc., Singapore, 1991.
References
[46] K. Nakamoto, Infrared and Raman spectrum of Inorganic and Coordination
Compounds, 5th ed., John Wiley and Sons Inc., New York, 1997.
[
47] T.D. Klots, W.B. Collier, Spectrochim. Acta 51A (1995) 1291.
48] G. Yang, S. Matsuzono, E. Koyama, H. Tokuhisa, K. Hiratani, Macromolecules 34
2001) 6545.
[
[
[
[
[
[
1] R.C. Maher, L.F. Cohen, P. Etchegoin, Chem. Phys. Lett. 352 (2002) 378.
2] S. Nie, S.R. Emory, Science 275 (1997) 1102.
3] J. Bukowska, J. Mol. Struct. 275 (1992) 151.
4] J. Chowdhury, M. Ghosh, T.N. Misra, J. Colloid Interface Sci. 228 (2000) 372.
5] H.W. He, L.P. Mens, L.M. Hu, Z.J. Liu, Chin. J. Pestic. Sci. 4 (2002) 14.
6] R.C. Elderfield, Heterocyclic Compounds, vol. 5, John Wiley and Sons, Inc., New
York/London, 1956, p. 487.
[
[
(
49] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of
Organic Structures, John Wiley and Sons Inc., New York, 1994.
[50] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spec-
troscopy, 2nd ed., Academic Press, New York, 1975.
[
[
51] P. Sett, N. Paul, S. Chattopadhyay, P.K. Mallick, J. Raman Spectrosc. 30 (1999) 277.
52] P. Sett, N. Paul, S. Chattopadhyay, P.K. Mallick, Spectrochim. Acta 56A (2000)
55.
[7] J.V.N. Vara-Prasad, A. Panapoulous, J.R. Rubin, Tetrahedron Lett. 41 (2000) 4065.
[8] E.G. Witte, H. Philipp, H. Vereecken, Org. Geochem. 29 (1998) 1829.
[9] R. Kloskowski, F. Fuhr, J. Environ. Sci. Health 22B (1987) 623.
8
[
[
53] P. Sett, S. Chattopadhyay, P.K. Mallick, J. Raman Spectrosc. 31 (2000) 177.
54] V. Volovsek, G. Baranovic, L. Colombo, J.R. Durig, J. Raman Spectrosc. 22 (1991)
[
10] J.L. Bennet, D.P. Thomas, Mode of action of antitrematodal agents, in: W.C.
Campbell, R.S. Rew (Eds.), Chemotherapy of Parasitic Disease, Plenum Press,
New York, 1986, p. 427.
11] R.O. McCracken, K.B. Lipkowitz, J. Parasitol. 76 (1990) 180.
12] R.O. McCracken, K.B. Lipkowitz, J. Parasitol. 76 (1990) 853.
3
5.
55] M. Muniz-Miranda, E. Castellucci, N. Neto, G. Sbrana, Spectrochim. Acta 39A
1983) 107.
56] J.H.S. Green, Spectrochim. Acta 24 (1968) 1627.
[
[
[
[
(
[
13] M.Y. Yousef, A.M. Eisa, M.N. Nasra, S.A. El-Bialy, Mansoura J. Pharm. Sci. 13 (1997)
[
57] J. Coates, in: R.A. Meyers (Ed.), Interpretation of Infrared Spectra, A Practical
Approach, John Wiley and Sons Inc., Chichester, 2000.
7
9.
[
[
[
14] F. Delmas, A. Avellaneda, C.D. Giorgio, M. Robin, E. DeClercq, P. Timon-David,
[
[
[
[
58] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene
J.P. Galy, Eur. J. Med. Chem. 39 (2004) 685.
Derivatives, John Wiley and Sons Inc., New York, 1974.
15] I.H. Hall, N.J. Peaty, J.R. Henry, J. Easmon, G. Heinisch, G. Purstinger, Arch. Pharm.
59] S. Higuchi, H. Tsuyama, S. Tanaka, H. Kamada, Spectrochim. Acta 30A (1974)
332 (1999) 115.
4
63.
60] J. Sarkar, J. Chowdhury, M. Ghosh, R. De, G.B. Talapatra, J. Phys. Chem. 109B
2005) 22536.
61] N. Sandhyarani, G. Skanth, S. Berchmanns, V. Yegnaraman, T. Pradeep, J. Colloid
Interface Sci. 209 (1999) 154.
16] I. Hutchinson, T.D. Bradshaw, C.S. Matthews, M.F.G. Stevens, A.D. Westwell,
Bioorg. Med. Chem. Lett. 13 (2003) 471.
17] P.J. Palmer, R.B. Trigg, J.V. Warrington, J. Med. Chem. 14 (1971) 248.
18] A. Benazzouz, T. Boraud, P. Dubedat, A. Boireau, J.M. Stutzmann, C. Gross, Eur. J.
Pharmacol. 284 (1995) 299.
(
[
[