10.1002/anie.201708273
Angewandte Chemie International Edition
COMMUNICATION
of Ca2+-bound GCAP-2. The remaining seven cross-links exceed
the CDI distance limit within the GCAP-2 monomer, but they can
be explained by the GCAP2 dimer.
Keywords: 1,1’-Carbonyldiimidazole (CDI) • cross-linking/mass
spectrometry (MS) • MS-cleavable cross-linker • p53 • GCAP- •
protein structure.
[1]
a) A. Sinz, Mass Spectrom. Rev. 2006, 25, 663-682; b) J. Rappsilber, J
Struct Biol 2011, 173, 530-540; c) A. Leitner, T. Walzthoeni, A.
Kahraman, F. Herzog, O. Rinner, M. Beck, R. Aebersold, Mol. Cell.
Proteomics 2010, 9, 1634-1649; d) C. Iacobucci, S. Reale, F. De Angelis,
Chembiochem 2013, 14, 181-183.
[2]
a) F. Liu, D. T. S. Rijkers, H. Post, A. J. R. Heck, Nat. Methods 2015, 12,
1179-1184; b) F. Liu, P. Lössl, R. Scheltema, R. Viner, A. J. R. Heck,
Nat. Commun 2017, 8; c) A. H. Kao, C. L. Chiu, D. Vellucci, Y. Y. Yang,
V. R. Patel, S. H. Guan, A. Randall, P. Baldi, S. D. Rychnovsky, L.
Huang, Mol. Cell. Proteomics 2011, 10; d) C. Arlt, M. Gotze, C. H. Ihling,
C. Hage, M. Schafer, A. Sinz, Anal. Chem. 2016, 88, 7930-7937; e) C.
Iacobucci, C. Hage, M. Schafer, A. Sinz, J. Am. Soc. Mass Spectr. 2017;
f) M. Q. Müller, F. Dreiocker, C. H. Ihling, M. Schäfer, A. Sinz, Anal.
Chem. 2010, 82, 6958-6968.
[3]
[4]
F. Bigi, R. Maggi, G. Sartori, Green Chem. 2000, 2, 140-148.
K. J. Padiya, S. Gavade, B. Kardile, M. Tiwari, S. Bajare, M. Mane, V.
Gaware, S. Varghese, D. Harel, S. Kurhade, Org. Lett. 2012, 14, 2814-
2817.
[5]
[6]
[7]
[8]
[9]
H. A. Staab, Angew. Chem. Int. Ed. 1962, 1, 351, Angew. Chem. 1962,
74, 407.
M. Götze, J. Pettelkau, R. Fritzsche, C. H. Ihling, M. Schäfer, A. Sinz, J.
Am. Soc. Mass Spectr. 2015, 26, 83-97.
C. L. Swaim, J. B. Smith, D. L. Smith, J. Am. Soc. Mass Spectr. 2004,
15, 736-749.
B. Schilling, R. H. Row, B. W. Gibson, X. Guo, M. M. Young, J. Am. Soc.
Mass Spectr. 2003, 14, 834-850.
C. Iacobucci, A. Sinz, Anal. Chem. 2017, 89, 7832-7835.
Figure 2. Front and side views of GCAP-2. The flexible C-terminal region of
GCAP-2 (S-191 to F-204) is not resolved in the NMR structure (PDB ID:
1JBA)[18]. The most C-terminal residue resolved in the NMR structure, P-190
(red), resides above a triangular surface (green dashed lines) that is formed by
the lysines K-30, K-96, K-126/128 (green) cross-linked with K-200 (or S201).
K50, S-37 (or T-39) (blue), were cross-linked to K-200 (or S-201) only by CDI.
The opposite site of GCAP-2 is defined by three Ca2+ ions (yellow spheres),
shown as black dashed line.
[10] a) A. C. Joerger, A. R. Fersht, Annu. Rev Biochem. 2016, 85, 375-404;
b) A. C. Joerger, A. R. Fersht, Annu. Rev Biochem. 2008, 77, 557-582.
[11] J. T. Nielsen, F. A. Mulder, Front. Mol. Biosci. 2016, 3, 4.
[12] H. Tidow, R. Melero, E. Mylonas, S. M. Freund, J. G. Grossmann, J. M.
Carazo, D. I. Svergun, M. Valle, A. R. Fersht, P. Natl Acad. Sci. USA
2007, 104, 12324-12329.
[13] a) A. L. Okorokov, M. B. Sherman, C. Plisson, V. Grinkevich, K.
Sigmundsson, G. Selivanova, J. Milner, E. V. Orlova, The EMBO J.
2006, 25, 5191-5200; b) R. Aramayo, M. B. Sherman, K. Brownless, R.
Lurz, A. L. Okorokov, E. V. Orlova, Nucleic Acids Res. 2011, 39, 8960-
8971.
[14] a) C. Arlt, V. Flegler, C. H. Ihling, M. Schäfer, I. Thondorf, A. Sinz,
Angew. Chem. Int. Ed. 2017, 56, 275-279; Angew. Chem. 2017, 129,
281-285; b) C. Arlt, C. H. Ihling, A. Sinz, Proteomics 2015, 15, 2746-
2755.
[15] W. A. Gorczyca, M. P. Graykeller, P. B. Detwiler, K. Palczewski, P. Natl
Acad. Sci. USA 1994, 91, 4014-4018.
Conclusion. Our ongoing search for novel cross-linking
principles led to the identification of the azolide CDI cross-linker.
CDI is the first “zero-length” cross-linker that is cleavable under
MS/MS conditions and delivers characteristic product ions that
facilitate the analysis of cross-linked products in protein
conformational studies. The cross-linking reaction can be
conducted at near-physiological pH conditions between 7.2 and
8. The short spacer length of CDI yields complementary
distance information compared to the so far mainly used NHS-
based cross-linkers. As CDI possesses similar reactivites
towards amine and hydroxyl groups in proteins, it allows
targeting additional regions in proteins that have so far been not
accessible to cross-linking with NHS esters. Also, sample
complexity is reduced due to the absence of “dead-end” (type 0)
cross-links. Other advantages of CDI are its low costs and its
straightforward application that will make the cross-linking/MS
approach available to a large number of laboratories having
access to mass spectrometers with MS/MS capabilities.
[16] K. W. Koch, D. Dell'Orco, ACS Chem. Neurosci. 2013, 4, 909-917.
[17] a) J. Pettelkau, I. Thondorf, S. Theisgen, H. Lilie, T. Schröder, C. Arlt, C.
H. Ihling, A. Sinz, J. Am. Soc. Mass Spectr. 2013, 24, 1969-1979; b) J.
Pettelkau, T. Schröder, C. H. Ihling, B. E. S. Olausson, K. Kölbel, C.
Lange, A. Sinz, Biochemistry 2012, 51, 4932-4949.
[18] J. B. Ames, A. M. Dizhoor, M. Ikura, K. Palczewski, L. Stryer, J. Biol.
Chem. 1999, 274, 19329-19337.
Acknowledgements
The authors would like to thank X. Wang for her contribution in
data analysis of BSA cross-links and D. Tänzler for GCAP-2
expression and purification. Dr. C. Ihling is acknowledged for his
valuable advice regarding LC/MS/MS analyses. A.S.
acknowledges financial support by the DFG (project Si 867/15-2).
C.I. is funded by the Alexander von Humboldt Foundation.
This article is protected by copyright. All rights reserved.