ChemComm
Communication
4 (a) W. C. P. Tsang, N. Zheng and S. L. Buchwald, J. Am. Chem. Soc.,
2005, 127, 14560; (b) H. M. L. Davies and M. S. Long, Angew. Chem.,
Int. Ed., 2005, 44, 3518.
5 (a) Y. Tan and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 3676;
(b) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck and
M. J. Gaunt, J. Am. Chem. Soc., 2008, 130, 16184; (c) M. Wasa and
J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 14058.
6 (a) N. Matsuda, K. Hirano, T. Satoh and M. Miura, Synthesis, 2012,
1792; (b) J. Wang, J.-T. Hou, J. Wen, J. Zhang and X.-Q. Yu, Chem.
Commun., 2011, 47, 3652.
7 (a) C. Wang and Y. Huang, Synlett, 2013, 0145; (b) T. W. Lyons and
M. S. Sanford, Chem. Rev., 2010, 110, 1147; (c) S. I. Kozhushkov and
L. Ackermann, Chem. Sci., 2013, 4, 886; (d) P. B. Arockiam,
C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012, 112, 5879;
(e) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc.
Rev., 2011, 40, 4740.
8 N. Kuhl, M. N. Hopkinson, J. Wencel-Dolard and F. Glorius, Angew.
Chem., Int. Ed., 2012, 51, 10236.
9 (a) S. Singha and K. M. Parida, Catal. Sci. Technol., 2011, 1, 1496;
(b) L. F. Zhu, B. Guo, D. Y. Tang, X. K. Hu, G. Y. Li and C. W. Hu,
J. Catal., 2007, 245, 446; (c) N. Hoffmann and M. Muhler, Catal. Lett.,
2005, 103, 155; (d) N. I. Kuznetsova, L. I. Kuznetsova, L. G. Detusheva,
V. A. Likholobov, G. P. Pez and H. Cheng, J. Mol. Catal. A: Chem., 2000,
Scheme 1 Possible catalytic pathway for aromatic amidation.
change in mechanism or rate-limiting step, depending on the
electronic character of the substituent.24,25
¨
161, 1; (e) J. Becker and W. F. Holderich, Catal. Lett., 1998, 54, 125.
10 Z. Li, D. A. Capretto, R. O. Rahaman and C. He, J. Am. Chem. Soc.,
2007, 129, 12058.
11 (a) M. R. Fructos, S. Trofimenko, M. M. Diaz-Requejo and P. J. Perez,
J. Am. Chem. Soc., 2006, 128, 11784; (b) M. M. Diaz-Requejo,
T. R. Belderrain, M. C. Nicasio, S. Trofimenko and P. J. Perez,
J. Am. Chem. Soc., 2003, 125, 12078.
12 C. W. Hamilton, D. S. Laitar and J. P. Sadighi, Chem. Commun., 2004,
1628.
13 S. Liang and M. P. Jensen, Organometallics, 2012, 31, 8055.
14 R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman and J. F. Hartwig,
J. Am. Chem. Soc., 2013, 135, 8480.
15 (a) R. Samanta, J. O. Bauer, C. Strohmann and A. P. Antonchick, Org.
Lett., 2012, 14, 5518; (b) A. A. Kantak, S. Potavathri, R. A. Barham,
K. M. Romano and B. DeBoef, J. Am. Chem. Soc., 2011, 133, 19960;
(c) H. J. Kim, J. Kim, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2011,
133, 16382.
16 (a) A. John and K. M. Nicholas, Organometallics, 2012, 31, 7914;
(b) A. A. Lamar and K. M. Nicholas, J. Org. Chem., 2010, 75, 7644;
(c) D. N. Barman, P. Liu, K. N. Houk and K. M. Nicholas, Organo-
metallics, 2010, 29, 3404.
17 (a) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012,
41, 3381; (b) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew.
Chem., Int. Ed., 2011, 50, 11062.
18 (a) C. Grohmann, H. Wang and F. Glorius, Org. Lett., 2012, 14, 656;
(b) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012, 14, 272.
19 (a) N. Matsuda, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2011,
13, 2860; (b) E. J. Yoo, S. Ma, T.-S. Mei, S. L. Chan and J.-Q. Yu, J. Am.
Chem. Soc., 2011, 133, 7652.
Mechanistic aspects of copper catalyzed C–H functionaliza-
tion are currently of high interest.26 One of several conceivable
pathways consistent with the observed substrate-dependent
regioselectivities, kinetic isotope effect, and relative arene
reactivities, and side products is shown in Scheme 1. Suggested
stages include: (a) generation of a Cu(II)-imido species C via OA and
redox disproportionation; (b) addition of electrophilic radicaloid D
to the arene, either by electrophilic (two electron) attack to give
adduct D or by radical attack to produce D0, depending on the arene
electronic character; and (c) C–H to N–H transfer with (phen)Cu+
elimination and aryl carbamate formation.
The (NC)Cu+–TsONHTroc system, employing an inexpensive
catalyst and convenient N-reagent, promotes moderately efficient
C–H amination of arenes lacking coordinating substituents and
exhibits high selectivity for aromatic vs. benzylic substitution.
Notes and references
‡ Aminated toluene products derive from copper mediated decomposi-
tion of the N-reagent; these were detected with all arene substrates.
§ Sample procedure: to a stirred mixture of A (0.010 g, 0.026 mmol)
and NC (0.005 g, 0.024 mmol) in the arene (ca. 1 mL) was added
N-tosyltroccarbamate (0.050 g, 0.138 mmol) and the mixture was
allowed to stir at 140 1C for 8 h. The reaction mixture was cooled to
room temperature, filtered through a pad of silica washing with CH2Cl2
and the filtrate concentrated under vacuum. The residue was purified
by silica chromatography using 5–15% Et2O in hexanes to obtain the
regioisomeric mixture of aminated arenes. The isomer ratio was deter-
mined by NMR using 1,3,5-trimethoxybenzene as a reference.
¶ Isomeric products were identified either by partial chromatographic
separation or independent synthesis. See ESI† for details of identifi-
cation.
20 K.-H. Ng, A. S. C. Chan and W.-Y. Yu, J. Am. Chem. Soc., 2010,
132, 12862.
21 Oxycarbamates in aziridination: (a) H. Lebel, M. Parmentier,
O. Leogane, K. Ross and C. Spitz, Tetrahedron, 2012, 68, 3396;
benzylic amination: (b) H. Lebel and K. Huard, Org. Lett., 2007,
9, 639; in directed aromatic amination: (c) C. Grohmann, H. Wang
and F. Glorius, Org. Lett., 2013, 15, 3014. Deprotecting the Troc
¨
¨
group; (d) E. Vellemae, V. Stepanov and U. Maeorg, Synth. Commun.,
2010, 40, 3397 and cited references.
22 Neither product 1 nor consumption of the N-reagent were detected
when PhH/Troccarbamate were heated at 140 1C without (NC)Cu+.
23 X. Chen, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006,
128, 12634.
24 B. I. Stokes, K. J. Richert and T. G. Driver, J. Org. Chem., 2009, 74, 6442.
25 A Hammett plot of log krel vs. the radical substituent parameter TE is
also non-linear (see ESI†). (a) Y.-D. Wu, C.-L. Wong, K. W. K. Chan,
G.-Z. Ji and X.-K. Jiang, J. Org. Chem., 1996, 61, 746; (b) S.-M. Au,
J.-S. Huang, C.-M. Che and W.-Y. Yu, J. Org. Chem., 2000, 65, 7858.
8 Alkyl arene side products are minimized in reactions at lower
temperatures (100 1C), but with lower conversion. The acetophenone
product from ethylbenzene is minimized by reaction in degassed
ethylbenzene with 3 Å molecular sieves under Ar.
1 (a) S. Rousseaux, B. Liegault and K. Fagnou, Modern Tools for the
Synthesis of Complex Bioactive Molecules, 2012, p. 1; (b) K. M. Engle
and J.-Q. Yu, Org. Chem., 2012, 279; (c) C. M. White, Synlett, 2012,
2746; (d) G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651. 26 (a) A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am.
2 Metal-Catalyzed Cross-Coupling Reaction, F. Diederich and
P. J. Stang, ed., Wiley VCH, Weinheim, 1998.
3 (a) A. Armstrong and J. C. Collins, Angew. Chem., Int. Ed., 2010, 49, 2282;
(b) F. Collet, R. H. Dodd and P. Dauban, Chem. Commun., 2009, 5061.
Chem. Soc., 2013, 135, 9797; (b) M. J. B. Aguila, Y. M. Badiei and
`
T. H. Warren, J. Am. Chem. Soc., 2013, 135, 9399; (c) G. Lefevre,
G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini and A. Jutand,
Organometallics, 2012, 31, 7694.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 10965--10967 10967