642
S. Issmaili et al.
LETTER
preparation of macrocylic bisintercalands able to have
new therapeutic properties. We tried first an O-alkylation
by phase transfer catalysis but all our attempts at purifica-
tion of the final products failed.12 According to good re-
sults previously described on mono- and dihydroxy
acridinones in our laboratory we tried alternatively to O-
acylate in pyridine the intermediate thallous salts of 10a-
c.13 Indeed, reaction of two acyl dihalides with the bis-(5-
hydroxyacridines) led to four bi-bridged compounds 11a-
d.14
References and Notes
(1) Johnson, D.S.; Boger D.L. in Comprehensive Supramolecular
Chemistry; Atwood, J.L., Ed.; Pergamon: Oxford, 1996; vol.
4, ch. 3; Wakelin, L.P.G.; Waring, M.J. in Comprehensive
Medicinal Chemistry; Sammes, P.G.; Taylor, J.B., Ed.;
Pergamon: Oxford, 1990; vol. 2, ch. 10.1.
(2) Boyer, G.; Galy J.P.; Barbe J. J. Heterocycl. Chem. 1991, 28,
913. Moisan, M.; Galy J.P.; Galy, A.M.; Barbe J. Monatsh.
Chem. 1993, 124, 23.
(3) Vichet, A.; Patellis A.M.; Galy J.P.; Galy, A.M.; Barbe J.;
Elguero J. J. Org. Chem. 1994, 59, 5156. Dhif D.; Galy J.P.;
Barbe J. Synth. Commun. 1991, 21, 969.
Acylation of compounds 6, 7 was next carried out by re-
action at the amino substituent at position 4. We chose
three acid dichlorides with a variable number of CH2
groups and performed the reaction on the derivatives 6
and 7 in pyridine under reflux,15 because of the best solu-
bility of these acridinones in this solvent. The acylated
mono-bridged bisacridines 12a-f were obtained in posi-
tions 4,4’.16
(4) Corsini, A.; Billo, E.J. J. Inorg. Chem. 1970, 32, 1241.
(5) 2-Bromo-3-nitrobenzoic acid was prepared according to the
literature: Culhane, P.J. Organic Synthese 1927, 1, 125.
(6) See: Hanoun, J.P.; Galy, J.P.; Tenaglia, A. Synth. Commun.
1995, 25, 2443. Compound 3:1H NMR (DMSO-d6) d:3.78 (s,
3H, OCH3), 6.75 (m, 2H, H-3’and H-6’), 7.01 (t, 1H, J = 8.01
Hz, H-5), 7.03 (m, 2H, J = 1.4 Hz, H-4’and H-5’), 8.06 (dd,
1H, J = 8.1 and 1.5 Hz, H-6), 8.21 (dd, 1H, J = 7.7 and 1.5 Hz,
H-4), 10.04 (s, 1H, NH), 11.34 (s, 1H, COOH). 13C NMR
(DMSO-d6) d:117.67 (C-3’), 116.31 (C-6’), 117.82 (C-5),
119.30 (C-1), 120.23 (C-5’), 123.82 (C-4’), 129.41 (C-1’),
130.67 (C-4), 138.58 (C-6), 139.08* (C-3), 139.17* (C-2),
150.10 (C-2’), 168.61 (COOH).
O
(7) See: Brockmann, H.; Muxfeldt, H.; Haese, G. Chem. Ber.
1957, 90, 44.
N
R1
H
NH
(CH2)n
NH
(8) Compound 5:1H NMR (DMSO-d6) d:4.05 (s, 3H, OCH3), 6.00
(s, 2 H, NH2), 7.11 (dd, 1H, J = 8.0 and 7.6 Hz, H-2), 7.21 (t,
1H, J = 8.0 Hz, H-7), 7.24 (dd, 1H, J = 7.5 and 1.4 Hz, H-3),
7.32 (dd, 1H, J = 7.8 and 1.2 Hz, H-6), 7.72 (dd, 1 H, J = 8.1
and 1.4 Hz, H-1), 7.79 (dd, 1H, J = 8.2 and 1.2 Hz, H-8), 9.56
(s, 1H, NH). 13C NMR(DMSO-d6) d:56.35 (OCH3), 112.41
(C- 6), 116.67 (C-1), 117.16 (C-8), 119.64 (C-3), 120.83 (C-
8a), 120.99 (C-7), 121.76 (C-9a), 121.78 (C-2), 130.71 (C-4a),
131.32 (C-10a), 133.64 (C-4), 147.80 (C-5), 176.75 (C-9).
(9) See: Claude, S.; Lehn, J.M.; Perez de Vega, M.J.; Vigneron,
J.P. New J. Chem. 1992, 16, 4.
O
O
ClCO(CH2)nCOCl
6 or 7
pyridine, reflux,
12 h
R1
H
N
12 a - f
O
12a R1 = OH; n = 3 (44%)
12b R1 = OH; n = 4 (52%)
6
7
Compound 7:1H NMR (DMSO-d6) d: 3.70 (t, 1H, J = 2.4 Hz
CH), 5.12 (d, 2H, J = 2.4 Hz, OCH2), 5.79 (s, 2H, NH2), 7.05
(t, 1H, J = 7.5 Hz, H-2), 7.08 (dd, 1H, J = 7.4 and 2.1 Hz, H-
3), 7.21 (t, 1H, J = 8.0 Hz, H-7), 7.43 (dd, 1H, J = 7.8 and 2.4
Hz, H-6), 7.57 (dd, 1H, J = 7.2 and 2.2 Hz, H-1), 7.83 (dd, 1H,
J = 8.2 and 1.1 Hz, H-8), 9.40 (s, 1H, NH).13C NMR (DMSO-
d6) d: 56.61 (OCH2), 78.88 (C), 79.22 (CH), 114.00 (C-6),
114.14 (C- 1), 117.42 (C-3), 118.06 (C-8), 120.43 (C-7),
120.99 (C-8a), 121.61 (C-9a), 121.98 (C-2), 129.82 (C-4a),
131.59 (C-10a), 137.35 (C-4), 145.50 (C-5), 176.86 (C-9).
(10) See reference 4. Compound 8:1H NMR (DMSO-d6) d: 4.04 (s,
3H, OCH3), 6.11 (s, 2H, NH2), 6.88 (dd, 1H, J = 7.2 and 1.3
Hz, H-3), 7.13 (dd, 1H, J = 7.5 and 0.9 Hz, H-6), 7.25 (dd, 1H,
J = 8.4 and 1.3 Hz, H-1), 7.34 (dd, 1H, J = 8.3 and 1.2 Hz, H-
2), 7.46 (dd, 1H, J = 8.5 and 1.0 Hz, H-7), 7.63 (dd, 1H, J = 8.5
and 0.8 Hz, H-8), 8.82 (s, 1H, H-9). 13C NMR(DMSO-d6) d:
55.81(OCH3), 106.66 (C-3), 106.86 (C-6), 113.77 (C-1),
119.77 (C-8), 125.91 (C-7), 127.04 (C-9a), 127.59 (C-8a),
127.65 (C- 2), 134.97 (C-9), 138.62 (C-4a), 139.03 (C-10a),
144.99 (C-4), 155.00 (C-5).
12c R1 = OH; n = 7 (61%)
12d R1
12e R1
12f R1
=
=
; n = 3 (47%)
; n = 4 (50%)
; n = 7 (51%)
OCH2C CH
OCH2C CH
OCH2C CH
=
Scheme 3
The last step was the oxidative coupling of the acetylenic
groups of the propargyloxy-9(10H)acridinones 12d-f,
with cupric acetate in pyridine according to the Lehn
procedure,9 in order to obtain intramolecular diacetylenic
coupling and bi-bridged acridanone macrocycles. Unfor-
tunately all our attempts of purification and characteriza-
tion of the recovered crude oil failed.
In conclusion, we reported the preparation of a new class
of mono- and bi-bridged acridines: the 4,4’-(diamino-a",
w"-acyl)-bis-(5-hydroxy, or propargyloxy-9(10H)-acridi-
nones), and the 4.4’-(diamino-a", w"-acyl) -5,5’-(dioxa-
a"', w"'-acyl) bisacridines; biological testing is now cur-
rently in progress to investigate their therapeutical activi-
ty.
Demethylation with 48% HBr led to the hydroxy derivative
9:1H NMR (DMSO-d6) d: 6.65 (s, 2H, NH2), 6.80 (dd, 1H,
J = 8.1 and 1.5 Hz, H-3), 7.03 (dd, 1H, J = 8.0 and 1.4 Hz, H-
6), 7.19 (dd, 1H, J = 7.9 and 1.5 Hz, H-1), 7.31 (t, 1H, J = 8.0
Hz, H- 2), 7.40 (t, 1H, J = 7.9 Hz, H-7), 7.51 (dd, 1H, J = 8.1
and 1.4 Hz, H-8), 8.79 (s, 1H, H-9), 9.97 (s, 1H, OH). 13
C
NMR d: 106.09 (C-3), 108.49 (C-6), 113.06 (C-1), 117.57 (C-
8), 126.79 (C-7), 127.11 (C-9a), 127.83 (C-2), 134.94 (C-9),
137.83 (C- 10a), 138.18 (C-4a), 145.60 (C-4), 153.08 (C-5).
Synlett 1999, No. 5, 641–643 ISSN 0936-5214 © Thieme Stuttgart · New York