Organometallics
Article
2
53, 635−646. (d) Scherer, W.; Wolstenholme, D. J.; Herz, V.;
as Dehydrogenation Catalysts for Amine Boranes. Chem. Sci. 2011, 2,
723−727.
Eickerling, G.; Bruck, A.; Benndorf, P.; Roesky, P. W. On the Nature
̈
of Agostic Interactions in Transition-Metal Amido Complexes. Angew.
Chem., Int. Ed. 2010, 49, 2242−2246.
(
(13) Friedrich, A.; Drees, M.; Schneider, S. Ruthenium-Catalyzed
Dimethylamineborane Dehydrogenation: Stepwise Metal-Centered
Dehydrocyclization. Chem. - Eur. J. 2009, 15, 10339−10342.
(14) Meermann, C.; Sirsch, P.; Tornroos, K. W.; Anwander, R.
Synthesis and Structural Characterization of Scandium SALEN
Complexes. Dalton Trans 2006, 1041−1050.
3) (a) Dunlop-Briere, A. F.; Baird, M. C.; Budzelaar, P. H. M.
̀
+
[
Cp TiCH CHMe(SiMe )] , an Alkyl-Titanium Complex Which (a)
2 2 3
Exists in Equilibrium between a β-Agostic and a Lower Energy γ-
Agostic Isomer and (b) Undergoes Hydrogen Atom Exchange
between α-, β-, and γ-Sites via a Combination of Conventional β-
Hydrogen Elimination-Reinsertion and a Nonconventional CH Bond
Activation Process Which Involves Proton Tunnelling. J. Am. Chem.
Soc. 2013, 135, 17514−17527. (b) Rozenel, S. S.; Perrin, L.;
Eisenstein, O.; Andersen, R. A. Experimental and DFT Computa-
tional Study of β-Me and β-H Elimination Coupled with Proton
Transfer: From Amides to Enamides in Cp* MX (M = La, Ce).
Organometallics 2017, 36, 97−108. (c) Scherer, W.; McGrady, G. S.
Agostic Interactions in d Metal Alkyl Complexes. Angew. Chem., Int.
Ed. 2004, 43, 1782−1806.
(
(15) MacDonald, M. R.; Langeslay, R. R.; Ziller, J. W.; Evans, W. J.
Synthesis, Structure, and Reactivity of the Ethyl Yttrium Metallocene,
(C Me ) Y(CH CH ), Including Activation of Methane. J. Am. Chem.
5 5 2 2 3
Soc. 2015, 137, 14716−14725.
(16) Culver, D. B.; Huynh, W.; Tafazolian, H.; Ong, T.; Conley, M.
P. The β-Agostic Structure in (C
NMR Studies of (C Me Sc-R (R = Me, Ph, Et). Angew. Chem., Int.
Ed. 2018, 57, 9520−9523.
17) Maity, A.; Teets, T. S. Main Group Lewis Acid-Mediated
Transformations of Transition-Metal Hydride Complexes. Chem. Rev.
016, 116, 8873−8911.
18) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.;
Me ) Sc(CH CH ): Solid-State
5
5 2 2 3
)
5 2
2
5
0
(
2
(
4) (a) Forster, T. D.; Tuononen, H. M.; Parvez, M.; Roesler, R.
Characterization of β-B-Agostic Isomers in Zirconocene Amidobor-
ane Complexes. J. Am. Chem. Soc. 2009, 131, 6689−6691.
Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. σ Bond
Metathesis” for C-H Bonds of Hydrocarbons and Sc-R (R = H, alkyl,
aryl) Bonds of Permethylscandocene Derivatives. Evidence for
Noninvolvement of the π System in Electrophilic Activation of
Aromatic and Vinylic C-H Bonds. J. Am. Chem. Soc. 1987, 109, 203−
(
b) Wolstenholme, D. J.; Traboulsee, K. T.; Decken, A.; McGrady,
G. S. Structure and Bonding of Titanocene Amidoborane Complexes:
A Common Bonding Motif with Their β-Agostic Organometallic
Counterparts. Organometallics 2010, 29, 5769−5772.
2
(
19.
(
5) Stennett, T. E.; Harder, S. s-Block Amidoboranes: Syntheses,
19) (a) Bosdet, M. J. D.; Piers, W. E. B-N as C-C Substitute in
Structures, Reactivity and Applications. Chem. Soc. Rev. 2016, 45,
112−1128.
6) (a) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I.
Aromatic Systems. Can. J. Chem. 2009, 87, 8−29. (b) Campbell, P.
G.; Marwitz, A. J. V.; Liu, S.-Y. Recent Advances in Azaborine
Chemistry. Angew. Chem., Int. Ed. 2012, 51, 6074−6092.
1
(
Amine- and Phosphine-Borane Adducts: New Interest in Old
Molecules. Chem. Rev. 2010, 110, 4023−4078. (b) Staubitz, A.;
Robertson, A. P. M.; Manners, I. Ammonia-Borane and Related
Compounds as Dihydrogen Sources. Chem. Rev. 2010, 110, 4079−
(
20) The insertion of aminoborane into M−R bonds has been
reported. See: Bellham, P.; Hill, M. S.; Liptrot, D. J.; MacDougall, D.
J.; Mahon, M. F. Alkylstrontium diamidoboranes: β-hydride
elimination and Sr-C insertion. Chem. Commun. 2011, 47, 9060−
4
124. (c) Rossin, A.; Peruzzini, M. Ammonia-Borane and Amine-
9062.
Borane Dehydrogenation Mediated by Complex Metal Hydrides.
Chem. Rev. 2016, 116, 8848−8872. (d) Colebatch, A. L.; Weller, A. S.
Amine-Borane Dehydropolymerization: Challenges and Opportuni-
ties. Chem. - Eur. J. 2019, 25, 1379−1390.
(
21) Lu, E.; Chen, Y.; Leng, X. Yttrium Anilido Hydride: Synthesis,
Structure, and Reactivity. Organometallics 2011, 30, 5433−5441.
22) Another possible route for the generation of complex 9 was
(
suggested by one reviewer that cannot be ruled out at the current
stage. Deprotonation of the ortho position of DMAP initially occurred
(
7) (a) Johnson, H. C.; Hooper, T. N.; Weller, A. S. The Catalytic
Dehydrocoupling of Amine-Boranes and Phosphine-Boranes. Top.
Organomet. Chem. 2015, 49, 153−220. (b) Melen, R. L.
Dehydrocoupling Routes to Element-Element Bonds Catalysed by
Main Group Compounds. Chem. Soc. Rev. 2016, 45, 775−788.
−
by the [Me NBH ] ligand to form an ortho-metalated intermediate
2
3
along with DMAB, which then underwent σ-bond metathesis to
produce scandocene hydride species. Finally, a protonation reaction
took place by HNMe BH − to afford complex 9 with release of H .
2
2
2
(
8) Helten, H.; Dutta, B.; Vance, J. R.; Sloan, M. E.; Haddow, M. F.;
(23) (a) Bouwkamp, M. W.; Budzelaar, P. H. M.; Gercama, J.;
Sproules, S.; Collison, D.; Whittell, G. R.; Lloyd-Jones, G. C.;
Manners, I. Paramagnetic Titanium(III) and Zirconium(III) Metal-
locene Complexes as Precatalysts for the Dehydrocoupling/
Dehydrogenation of Amine-Boranes. Angew. Chem., Int. Ed. 2013,
Morales, I. D. H.; Wolf, J. de; Meetsma, A.; Troyanov, S. I.; Teuben, J.
H.; Hessen, B. Naked (C Me ) M Cations (M = Sc, Ti, and V) and
5
5 2
Their Fluoroarene Complexes. J. Am. Chem. Soc. 2005, 127, 14310−
4319. (b) Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron,
1
5
2, 437−440.
9) (a) Hill, M. S.; Kociok-Ko
Centred Dehydrocoupling of Me NH·BH . Chem. Commun. 2010, 46,
L.; Eisenstein, O. Carbon Monoxide Activation via O-Bound CO
Using Decamethylscandocinium-Hydridoborate Ion Pairs. J. Am.
Chem. Soc. 2012, 134, 10843−10851.
(
̈
hn, G.; Robinson, T. P. Group 3-
2
3
7
587−7589. (b) Lu, E.; Yuan, Y.; Chen, Y.; Xia, W. 1-Methyl
(
24) (a) Wallis, C. J.; Dyer, H.; Vendier, L.; Alcaraz, G.; Sabo-
Boratabenzene Yttrium Alkyl: A Highly Active Catalyst for
Etienne, S. Dehydrogenation of Diamine-Monoboranes to Cyclic
Diaminoboranes: Efficient Ruthenium-Catalyzed Dehydrogenative
Cyclization. Angew. Chem., Int. Ed. 2012, 51, 3646−3648. (b) Wallis,
C. J.; Alcaraz, G.; Petit, A. S.; Poblador-Bahamonde, A. I.; Clot, E.;
Bijani, C.; Vendier, L.; Sabo-Etienne, S. A Highly Effective Ruthenium
System for the Catalyzed Dehydrogenative Cyclization of Amine-
Boranes to Cyclic Boranes under Mild Conditions. Chem. - Eur. J.
Dehydrocoupling of Me NH·BH . ACS Catal. 2013, 3, 521−524.
2
3
(
c) Cui, P.; Spaniol, T. P.; Maron, L.; Okuda, J. Dehydrogenation of
Amine-Borane Me NH·BH Catalyzed by a Lanthanum-Hydride
Complex. Chem. - Eur. J. 2013, 19, 13437−13444.
(
Catalysis. Acc. Chem. Res. 1985, 18, 51−56. (b) Hong, S.; Marks, T. J.
Organolanthanide-Catalyzed Hydroamination. Acc. Chem. Res. 2004,
3
(
2
3
10) (a) Watson, P. L.; Parshall, G. W. Organolanthanides in
2
015, 21, 13080−13090. (c) McLellan, R.; Kennedy, A. R.; Orr, S. A.;
7, 673−686.
11) See for comparisons: Erickson, K. A.; Kiplinger, J. L. Catalytic
Robertson, S. D.; Mulvey, R. E. Lithium Dihydropyridine
Dehydrogenation Catalysis: A Group 1 Approach to the Cyclization
of Diamine Boranes. Angew. Chem., Int. Ed. 2017, 56, 1036−1041.
Dehydrogenation of Dimethylamine Borane by Highly Active
Thorium and Uranium Metallocene Complexes. ACS Catal. 2017,
(d) Boudjelel, M.; Carrizo, E. D. S.; Mallet-Ladeira, S.; Massou, S.;
7
(
, 4276−4280 and references therein. .
Miqueu, K.; Bouhadir, G.; Bourissou, D. Catalytic Dehydrogenation
of (Di)Amine-Boranes with a Geometrically Constrained Phosphine-
Borane Lewis Pair. ACS Catal. 2018, 8, 4459−4464.
12) With a combination of 3 equiv of K[NMe BH ], a nickel
2
3
complex showed extremely high activity for the dehydrogenation of
DMAB. See: Vogt, M.; Bruin, B. de; Berke, H.; Trincado, M.;
Grutzmacher, H. Amino Olefin Nickel(I) and Nickel(0) Complexes
̈
F
Organometallics XXXX, XXX, XXX−XXX