534
J. T. Pan et al./Chemical Papers 69 (4) 527–535 (2015)
cury sensing. Journal of the American Chemical Society,
127, 12351–12356. DOI: 10.1021/ja0517724.
Lee, M. H., Cho, B. K., Yoon, J. Y., & Kim, J. S. (2007). Selec-
tively chemodosimetric detection of Hg(II) in aqueous media.
Organic Letters, 9, 4515–4518. DOI: 10.1021/ol7020115.
Li, X. H., Wu, Y. Q., Liu, Y., Zou, X. M., Yao, L. M., Li, F.
Y., & Feng, W. (2014). Cyclometallated ruthenium complex-
modified upconversion nanophosphors for selective detec-
tion of Hg2+ ions in water. Nanoscale, 6, 1020–1028. DOI:
10.1039/c3nr05195a.
Liang, Z. Q., Wang, C. X., Yang, J. X., Gao, H. W., Tian, Y.
P., Tao, X. T., & Jiang, M. H. (2007). A highly selective col-
orimetric chemosensor for detecting the respective amounts
of iron(II) and iron(III) ions in water. New Journal of Chem-
istry, 31, 906–910. DOI: 10.1039/b701201m.
Lu, F. N., Yamamura, M., & Nabeshima, T. (2013). A highly
selective and sensitive ratiometric chemodosimeter for Hg2+
ions based on an iridium(III) complex via thioacetal depro-
tection reaction. Dalton Transactions, 42, 12093–12100. DOI:
10.1039/c3dt50807b.
Madhu, S., Sharma, D. K., Basu, S. K., Jadhav, S., Chowdhury,
A., & Ravikanth, M. (2013). Sensing Hg(II) in vitro and in
vivo using a benzimidazole substituted BODIPY. Inorganic
Chemistry, 52, 11136–11145. DOI: 10.1021/ic401365x.
Mei, Q. B., Wang, L. X., Tian, B., Yan, F., Zhang, B.,
Huang, W., & Tong, B. H. (2012). A highly selective and
naked-eye sensor for Hg2+ based on quinazoline-4(3H)-
thione. New Journal of Chemistry, 36, 1879–1883. DOI:
10.1039/c2nj40400a.
Dalapati, S., Paul, B. K., Jana, S., & Guchhait, N. (2011).
Highly selective and sensitive fluorescence reporter for toxic
Hg(II) ion by a synthetic symmetrical azine derivative.
Sensors and Actuators B: Chemical, 157, 615–620. DOI:
10.1016/j.snb.2011.05.034.
Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S., & Rafipour,
A. (2012). Highly selective Hg2+ colorimetric sensor us-
ing green synthesized and unmodified silver nanoparticles.
Sensors and Actuators B: Chemical, 161, 880–885. DOI:
10.1016/j.snb.2011.11.052.
Goswami, S., Das, S., & Aich, K. (2013). An ICT based
highly selective and sensitive sulfur-free sensor for naked
eye as well as fluorogenic detection of Hg2+ in mixed
aqueous media. Tetrahedron Letters, 54, 4620–4623. DOI:
10.1016/j.tetlet.2013.06.035.
Gundacker, C., Gencik, M., & Hengstschläger, M. (2010). The
relevance of the individual genetic background for the tox-
icokinetics of two significant neurodevelopmental toxicants:
Mercury and lead. Mutation Research/Reviews in Mutation
Research, 705, 130–140. DOI: 10.1016/j.mrrev.2010.06.003.
Gunnlaugsson, T., Kruger, P. E., Jensen, P., Tierney, J., Ali,
H. D. P., & Hussey, G. M. (2005). Colorimetric “naked eye”
sensing of anions in aqueous solution. The Journal of Organic
Chemistry, 70, 10875–10878. DOI: 10.1021/jo0520487.
Guo, Z. Q., Zhu, W. H., Zhu, M. M., Wu, X. M., & Tian, H.
(2010). Near-infrared cell-permeable Hg2+ -selective ratio-
metric fluorescent chemodosimeters and fast indicator paper
for MeHg+ based on tricarbocyanines. Chemistry – A Euro-
pean Journal, 16, 14424–14432. DOI: 10.1002/chem.201001
769.
Misra, A., & Shahid, M. (2010). Chromo and fluorogenic prop-
erties of some azo-phenol derivatives and recognition of
Hg2+ ion in aqueous medium by enhanced fluorescence. The
Journal of Physical Chemistry C, 114, 16726–16739. DOI:
10.1021/jp1049974.
Hansen, S., Nieboer, E., Sandanger, T. M., Wilsgaard, T.,
Thomassen, Y., Veyhe, A. S., & Odland, J. Ø. (2011).
Changes in maternal blood concentrations of selected es-
sential and toxic elements during and after pregnancy.
Journal of Environmental Monitoring, 13, 2143–2152. DOI:
10.1039/c1em10051c.
Ren, W., Zhu, C. Z., & Wang, E. K. (2012). Enhanced sensitiv-
ity of a direct SERS technique for Hg2+ detection based on
the investigation of the interaction between silver nanopar-
ticles and mercury ions. Nanoscale, 4, 5902–5909. DOI:
10.1039/c2nr31410j.
Shafeekh, K. M., Rahim, M. K. A., Basheer, M. C., Suresh,
C. H., & Das, S. (2013). Highly selective and sensitive
colourimetric detection of Hg2+ ions by unsymmetrical
squaraine dyes. Dyes and Pigments, 96, 714–721. DOI:
10.1016/j.dyepig.2012.11.013.
Shellaiah, M., Wu, Y. H., Singh, A., Ramakrishnam Raju, M.
V., & Lin, H. C. (2013). Novel pyrene- and anthracene-
based Schiff base derivatives as Cu2+ and Fe3+ fluores-
cence turn-on sensors and for aggregation induced emis-
sions. Journal of Materials Chemistry A, 1, 1310–1318. DOI:
10.1039/c2ta00574c.
Sheng, R. L., Wang, P. F., Liu, W. M., Wu, X. H., & Wu, S. K.
(2008). A new colorimetric chemosensor for Hg2+ based on
coumarin azine derivative. Sensors and Actuators B: Chem-
ical, 128, 507–511. DOI: 10.1016/j.snb.2007.07.069.
Thirupathi, P., Saritha (née Gudelli), P., & Lee, K. H. (2014).
Ratiometric fluorescence chemosensor based on tyrosine
derivatives for monitoring mercury ions in aqueous solutions.
Organic & Biomolecular Chemistry, 12, 7100–7109. DOI:
10.1039/c4ob01044b.
Hu, S. Z., & Chen, C. F. (2011). Hg2+ recognition by triptycene-
derived heteracalixarenes: Selectivity tuned by bridging het-
eroatoms and macrocyclic cavity. Organic & Biomolecular
Chemistry, 9, 5838–5844. DOI: 10.1039/c1ob05515a.
Huang, J. H., Gao, X., Jia, J. J., Kim, J. K., & Li, Z. G. (2014).
Graphene oxide-based amplified fluorescent biosensor for
Hg2+ detection through hybridization chain reactions. An-
alytical Chemistry, 86, 3209–3215. DOI: 10.1021/ac500192r.
Jenssen, M. T. S., Brantsæter, A. L., Haugen, M., Meltzer,
H. M., Larssen, T., Kvalem, H. E., Birgisdottir, B. E.,
Thomassen, Y., Ellingsen, D., Alexander, J., & Knutsen, H.
K. (2012). Dietary mercury exposure in a population with
a wide range of fish consumption – self-capture of fish and
regional differences are important determinants of mercury
in blood. Science of The Total Environment, 439, 220–229.
DOI: 10.1016/j.scitotenv.2012.09.024.
Kim, H. J., Park, J. E., Choi, M. G., Ahn, S. D., & Chang, S.
K. (2010). Selective chromogenic and fluorogenic signalling
of Hg2+ ions using a fluorescein–coumarin conjugate. Dyes
and Pigments, 84, 54–58. DOI: 10.1016/j.dyepig.2009.06.009.
Kim, H. N., Ren, W. X., Kim, J. S., & Yoon, J. Y. (2012).
Fluorescent and colorimetric sensors for detection of lead,
cadmium and mercury ions. Chemical Society Reviews, 41,
3210–3244. DOI: 10.1039/c1cs15245a.
Tian, M. Q.,
& Ihmels, H. (2011). Selective colorimetric
detection of Hg2+ and Mg2+ with crown ether substi-
tuted N-aryl-9-aminobenzo[b]quinolizinium derivatives. Eu-
ropean Journal of Organic Chemistry, 2011, 4145–4153.
DOI: 10.1002/ejoc.201100329.
Koenig, S., Solé, M., Fernández-Gómez, C., & Díez, S. (2013).
New insights into mercury bioaccumulation in deep-sea or-
ganisms from the NW Mediterranean and their human health
implications. Science of The Total Environment, 442, 329–
335. DOI: 10.1016/j.scitotenv.2012.10.036.
Wang, K., Yang, L. X., Zhao, C., & Ma, H. M. (2013). 4-(8-
Quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a newcolori-
metric probe for rapid and visual detection of Hg2+. Spec-
trochimica Acta Part A, 105, 29–33. DOI: 10.1016/j.saa.2012.
11.114.
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 5/27/15 5:46 PM