reported by Sideris et al., although of the same order of
magnitude, differs from that obtained by us in this work
within the experimental uncertainties. We believe that
these differences can be attributed to the method used by
Sideris et al. to obtain the binding constant, a Scatchard
plot method which, in contrast with NLR methods, is well-
known to give unreliable values for the association constant
in most cases. In contrast, the K values obtained for the
11. J unquera, E.; Tardajos, G.; Aicart, E. Langmuir 1993, 9,
213.
1
1
2. Connors, K. A. Binding Constants: The Measurement of
Molecular Complex Stability; J ohn Wiley & Sons: New York,
1
987.
13. Cramer, F.; Saenger, W.; Spatz, H.-Ch. J . Am. Chem. Soc.
1
967, 89, 14.
1
1
4. Connors, K. A.; Lipari, J . M. J . Pharm. Sci. 1976, 65, 379.
5. Uekama, K.; Otagiri, M.; Kanie, Y.; Tanaka, S.; Ikeda, K.
Chem. Pharm. Bull. 1975, 23, 1421.
-
-
complexes â-CD:SA or DIMEB:SA (this work) and for
1
6. Otagiri, M.; Miyaji, T.; Uekama, K.; Ikeda, K. Chem. Pharm.
-
24
HPBCD:SA
are all determined under analogous satura-
Bull. 1976, 24, 1146.
tion degree46 range and by using NLR methods, although
17. Miyaji, T.; Kurono, Y.; Uekama, K.; Ikeda, K. Chem. Pharm.
Bull. 1976, 24, 1155.
with different experimental techniques and mathematical
models. They reveal that the affinity of NaSA upon binding
a cyclodextrin is greater in the cases of the â-CD derivatives
than for the partner cyclodextrin (â-CD), behavior usually
found in most CD + guest systems.
1
8. (a) Gelb, R. I.; Schwartz, L. M.; Murray, C. T.; Laufer, D. A.
J . Am. Chem. Soc. 1978, 100, 3552. (b) Gelb, R. I.; Schwartz,
L. M.; Laufer, D. A. J . Am. Chem. Soc. 1978, 100, 5875.
19. (a) Satake, I.; Ikenoue, T.; Takeshita, T.; Ayakawa, K.;
Maeda, T. Bull. Chem. Soc. J pn. 1985, 58, 2746. (b) Satake,
I.; Yoshida, S.; Ayakawa, K.; Maeda, T.; Kusumoto, Y. Bull.
Chem. Soc. J pn. 1986, 59, 3991.
From simple mathematical operations with the values
-
1
-1
of Kâ-CD:SA- ) 105 M and KDIMEB:SA- ) 140 M obtained
in this work, it can be concluded that a normal dose of
sodium salicylate, if administered encapsulated by â-CD
or DIMEB at biological pH, leaves in the medium an initial
20. (a) Palepu, R.; Reinsborough, V. C. Aust. J . Chem. 1990, 43,
2119. (b) Palepu, R.; Reinsborough, V. C. Can. J . Chem.
1
988, 66, 325.
2
1. (a) Tawarah, K. M.; Wazwaz, A. A. J . Chem. Soc. Faraday
Trans. 1993, 89, 1729. (b) Tawarah, K. M.; Wazwaz, A. A.
Ber. Bunsenges. Phys. Chem. 1993, 97, 727.
-
quantity of free and available SA which ranges from 40
to 60% of the total amount of the administered drug. And,
what is more important, as long as the organism “makes
use” of the drug, the equilibrium (eq 2) is shifted by mass
action toward the release of the active principle, keeping
and regulating its presence in the medium. These effects
would be even more emphasized when the HSA species is
absolutely predominant, which occurs at a strongly acidic
pH, characteristic for example of the stomach. Thus,
repeating the same simple calculations with the binding
constants of the complexes formed by cyclodextrins and
salicylic acid, it can be concluded that with similar doses,
just 25% of the drug would be free in the medium.
22. (a) J unquera, E.; Pe n˜ a, L.; Aicart, E. Langmuir, 1995, 11,
4
685. (b) J unquera, E.; Pe n˜ a, L.; Aicart, E. J . Inclusion
Phenom. 1996, 24, 233.
2
3. Posp ´ı sil, L.; Colombini, M. P. J . Inclusion Phenom. 1993, 16,
2
55.
24. J unquera, E.; Aicart, E. J . Inclusion Phenom. 1997, 29, 119.
25. Tardajos, G.; Diaz Pe n˜ a, M.; Aicart, E. J . Chem. Thermodyn.
1
986, 18, 683.
2
2
2
6. Kroebel, W.; Marht, K. M. Acustica 1976, 35, 134.
7. J unquera, E.; Aicart, E. Rev. Sci. Instrum. 1994, 65, 2672.
8. Treiner, C.; Khodja, A. A.; Fromon, M.; Chevalet, J . J . Sol.
Chem. 1989, 18, 217.
29. Martin Davies, D.; Savage, J . J . Chem. Soc. Perkin Trans. 2
994, 1525.
0. Fronza, G.; Mele, A.; Redenti, E.; Ventura, P. J . Pharm. Sci.
992, 81, 1162.
1
3
3
These estimations rebound the advantages of the use of
cyclodextrins as drug carriers, widely commented on in the
literature:1 (i) the adverse side effects can be substan-
tially reduced since the quantity of drug which is really
free and available in the medium may be much lower than
the administered dose; (ii) the time of action of the drug
can be prolonged, which in the case of the NSAID therapy
1
1. Senel, S.; C¸ akoglu, O¨ .; Sumnu, M.; Duch eˆ ne, D.; Hincal, A.
-6
A. J . Inclusion Phenom. 1992, 14, 171.
32. Puglisi, G.; Ventura, C. A.; Fresta, M.; Vandelli, M. A.;
Cavallaro, G.; Zappala, M. J . Inclusion Phenom. 1996, 24,
1
93.
3
3. Esclusa-D ´ı az, M. T.; Guimaraens-M e´ ndez, M.; P e´ rez-Marcos,
M. B.; Vila-J ato, J . L.; Torres-Labandeira, J . J . Int. J . Pharm.
1996, 143, 203.
(salicyclic and related drugs) is particularly important,
3
3
4. Loukas, Y. L.; Vraka, V.; Gregoriadis, G. Int. J . Pharm. 1996,
given its well-known fast onset of action and subsequent
short elimination half-life; and (iii) as a consequence, the
number of doses and their frequency can be reduced with
the subsequent decrease of the side effects as well. The
confirmation of all these estimations in vivo, although out
of the scope of this work, would be welcomed.
1
44, 225.
5. Bender, M.; Komiyama, M. Cyclodextrin Chemistry; Springer-
Verlag: Berl ´ı n, 1978.
36. Saenger, W. Inclusion Compounds; Atwood, J . L., Davies, J .
E. D., MacNicol, D. D., Eds.; Academic Press: London, 1984.
3
3
7. Clarke, R. J .; Coates, J . H.; Lincoln, S. F. Adv. Carbohydr.
Chem. Biochem. 1988, 46, 205.
8. MacPherson, Y. E.; Palepu, R.; Reinsborough, V. C. J .
Inclusion Phenom. 1990, 9, 137.
References and Notes
. Luzzi, L.; Palmieri, A. Biomedical Applications of Microen-
capsulation; F. Lim Ed.: CRC Press, Boca Rat o´ n, FL, 1984.
. Duch eˆ ne, D.; Wouessidjewe, D. Drug Dev. Ind. Pharm. 1990,
1
2
3
1
6, 2487.
. (a) Szejtli, J . Med. Res. Rev. 1994, 14, 353. (b) Szejtli, J . J .
Inclusion Phenom. 1992, 14, 25.
4
5
. Loftsson, T.; Brewster, M. E. J . Pharm. Sci. 1996, 85, 1017.
. Szejtli, J .; Osa, T. Comprehensive Supramolecular Chemistry.
Vol. 3. Cyclodextrins; J . M., Lehn, Ed.; Pergamon Press:
Oxford, UK, 1996, and references therein.
6
. Thompson, D. O. Crit. Rev. Ther. Drug Carrier Syst. 1997,
1
4, 1.
7
8
9
. Rajewski, R. A.; Stella, V. J . J . Pharm. Sci. 1996, 85, 1142.
. Schneider, H.-J . Angew. Chem. Int. Ed. Engl. 1991, 30, 1417.
. (a) Nowick, J . S.; Chen, J . S.; Noronha, G. J . Am. Chem. Soc.
Acknowledgments
1
993, 115, 7636. (b) Nowick, J . S.; Cao, T.; Noronha, G. J .
Am. Chem. Soc. 1994, 116, 3285.
0. J unquera, E.; Aicart, E.; Tardajos, G. J . Phys. Chem. 1992,
6, 4533.
Authors are grateful to the Ministerio de Educaci o´ n y Cultura
of Spain for funding through the DGES PB95-0356.
1
9
J S970117U
9
0 / Journal of Pharmaceutical Sciences
Vol. 87, No. 1, January 1998