C O M M U N I C A T I O N S
Acknowledgment. This work was supported in part by the
Schweizerischer Nationalfonds. We are grateful to Prof. J. Frost
for plasmid pKAD50, Prof. E. Leistner for plasmid pKS3-02, and
2
Prof. B. Jaun for expert assistance with the H NMR experiments.
Supporting Information Available: Coordinates and computational
details for calculation of the theoretical isotope effects, and complete
ref 13b. This material is available free of charge via the Internet at
http://pubs.acs.org.
References
(
1) (a) Chook, Y. M.; Gray, J. V.; Ke, H.; Lipscomb, W. N. J. Mol. Biol.
1994, 240, 476-500. (b) Chook, Y. M.; Ke, H.; Lipscomb, W. N. Proc.
Natl. Acad. Sci. U.S.A. 1993, 90, 8600-8603. (c) Lee, A. Y.; Karplus, P.
A.; Ganem, B.; Clardy, J. J. Am. Chem. Soc. 1995, 117, 3627-3628. (d)
Str a¨ ter, N.; Schnappauf, G.; Braus, G.; Lipscomb, W. N. Structure 1997,
5, 1437-1452.
Figure 1. (a) 2H NMR spectrum of [2- H]isochorismate in 50 mM
2
phosphate buffer (pH 7.5) at 30 °C using deuterium-depleted H2O and 1.00
2
mM dioxane d-8 as internal standard. (b) H NMR spectrum of labeled
(
2) (a) Li, Y.; Alanine, A. I. D.; Vishwakarma, R. A.; Balachandran, S.;
Leeper, F. J.; Battersby, A. R. Chem. Commun. 1994, 2507-2508. (b)
Shipman, L. W.; Li, D.; Roessner, C. A.; Scott, A. I.; Sacchettini, J. C.
Structure 2001, 9, 587-596.
isochorismate (a) after incubation with 25 µM IPL (in natural abundance
H2O, hence the small peak at 4.55 ppm) for 30 min at 30 °C.
(
3) (a) Katayama, K.; Kobayashi, T.; Oikawa, H.; Honma, M.; Ichihara, A.
Biochim. Biophys. Acta 1998, 1384, 387-395. (b) Auclair, K.; Sutherland,
A.; Kennedy, J.; Witter, D. J.; Van den Heever, J. P.; Hutchinson, C. R.;
Vederas, J. C. J. Am. Chem. Soc. 2000, 122, 11519-11520. (c) Watanabe,
K.; Mie, T.; Ichihara, A.; Oikawa, H.; Honma, M. J. Biol. Chem. 2000,
2
75, 38393-38401. (d) Ose, T.; Watanabe, K.; Mie, T.; Honma, M.;
Watanabe, H.; Yao, M.; Oikawa, H.; Tanaka, I. Nature 2003, 422, 185-
1
89. (e) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003,
4
2, 3078-3115.
(
(
(
(
4) (a) Serino, L.; Reimmann, C.; Baur, H.; Beyeler, M.; Visca, P.; Haas, D.
Mol. Gen. Genet. 1995, 249, 217-228. (b) Gaille, C.; Kast, P.; Haas, D.
J. Biol. Chem. 2002, 277, 21768-21775.
5) This enzyme is encoded by pchB, and the protein is thus also referred to
as PchB. In addition to IPL activity, PchB also exhibits weak chorismate
mutase activity (ref 4b).
6) (a) Walsh, C. T.; Liu, J.; Rusnak, F.; Sakaitani, M. Chem. ReV. 1990, 90,
1
105-1129. (b) Bentley, R. Crit. ReV. Biochem. Mol. Biol. 1990, 25, 307-
3
84.
7) An analogous mechanism has been postulated for the decomposition of
Figure 2. Becke3LYP/DZ+(2d,p) structure of the pericyclic transition state
for the conversion of isochorismate to salicylate and pyruvate.
3
-(methoxycarbonyl)-5-ethenoxycyclohexadiene-cis-6-d to give methyl
benzoate and CH DCHO, and for the elimination of pyruvate from
2
chorismate to give 4-hydroxybenzoate: (a) Gajewski, J. J.; Jurayj, J.;
Kimbrough, D. R.; Gande, M. E.; Ganem, B.; Carpenter, B. K. J. Am.
Chem. Soc. 1987, 109, 1170-1186. (b) Wright, S. K.; DeClue, M. S.;
Mandal, A.; Lee, L.; Wiest, O.; Cleland, W. W.; Hilvert, D. J. Am. Chem.
Soc. 2005, 127, 12957-12964.
which can be directly accessed from the predominant pseudodi-
equatorial substrate conformer, predicts an isotope effect of 2.222
for the elimination reaction, in good agreement with the observed
effect on kcat. The isotopically sensitive bond-breaking step in the
enzymatic reaction thus appears to be fully rate determining in IPL.
In summary, experiment and computation point to a one-step
pericyclic mechanism for the IPL-catalyzed conversion of iso-
chorismate to salicylate and pyruvate. Expansion of the small set
of enzymes known to catalyze sigmatropic rearrangements promises
to enhance our understanding of the strategies proteins use to
accelerate this fundamental class of reaction.14 Additionally, our
finding raises the intriguing possibility that other protein catalysts
will be found for such processes. The IPL transformation is formally
similar to the elimination of pyruvate from other shikimate
metabolites, including chorismate, 4-amino-4-deoxychorismate, and
(
8) K u¨ nzler, D. E.; Sasso, S.; Gamper, M.; Hilvert, D.; Kast, P. J. Biol. Chem.
2005, 280, 32827-32834.
(
9) (a) Fleet, G. W. J.; Shing, T. K. M. Chem. Commun. 1983, 849-850. (b)
Fleet, G. W. J.; Shing, T. K. M.; Warr, S. M. J. Chem. Soc., Perkin Trans.
1 1984, 905-908.
(
10) DeClue, M. S.; Baldridge, K. K.; Kast, P.; Hilvert, D., submitted.
(
11) Sunko, D. E.; Hehre, W. J. Prog. Phys. Org. Chem. 1983, 14, 205-246.
(12) Northrop, D. B. Biochemistry 1975, 14, 2644-2651.
(
13) (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon,
M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.;
Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem.
1993, 14, 1347-1363. (b) Frisch, M. J. et al. Gaussian03, revision C.01;
Gaussian, Inc.: Wallingford, CT, 2004.
(
14) Based on sequence homology, it appears likely that the P. aeruginosa
IPL and AroQ chorismate mutases exploit similar constellations of active
site residues to promote their respective [1,5]- and [3,3]-sigmatropic
rearrangements (ref 8).
(15) Gallagher, D. T.; Mayhew, M.; Holden, M. J.; Howard, A.; Kim, K.-J.;
1
5
Vilker, V. L. Proteins 2001, 44, 304-311.
2
-amino-2-deoxyisochorismate, catalyzed by chorismate lyase or
(
16) Kerbarh, O.; Ciulli, A.; Howard, N. I.; Abell, C. J. Bacteriol. 2005, 187,
16
17
salicylate synthase, 4-amino-4-deoxychorismate lyase, and an-
thranilate synthase,18 respectively. The importance of these enzymes
5061-5066.
(17) Nakai, T.; Mizutani, H.; Miyahara, I.; Hirotsu, K.; Takeda, S.; Jhee, K.-
H.; Yoshimura, T.; Esaki, N. J. Biochem. 2000, 128, 29-38.
for the production of diverse aromatic metabolites, including
(18) Spraggon, G.; Kim, C.; Xuong, N.-H.; Yee, M.-C.; Yanofsky, C.; Mills,
S. E. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6021-6026.
6
ubiquinones, siderophores, folates, and amino acids, warrants
careful reinvestigation of their mechanism of action.
JA055871T
J. AM. CHEM. SOC.
9
VOL. 127, NO. 43, 2005 15003