Struct Chem
1
1. Girichev GV, Giricheva NI, Golubchikov OA, Mimenkov YV,
Semeikin AS, Shlykov SA (2010) Octamethylporphyrin copper,
Conclusion
C
porphyrins in gas phase. J Mol Struct 978:163–169
12. Girichev GV, Giricheva NI, Koifman OI, Mimenkov YV,
Pogonin AE, Semeikin AS, Shlykov SA (2012) Molecular
28
H
28
N
4
Cu—a first experimental structure determination of
By combination of experimental and theoretical results, the
coordination center in copper(II) 2,9,16,23-tetra-tert-butyl
phthalocyanine, CuC N H , was determined to adopt D
4h
4
8
8
48
structure and bonding in octamethylporphyrin tin(II), SnN
28. Dalton Trans 41:7550–7558
4 28-
C
symmetry in the gas phase. According to GED and DFT
results, the internal rotation of tert-butyl groups has no
significant influence on the phthalocyanine ligand struc-
ture. Comparison of the DFT results for the structures of
H
1
1
1
3. Girichev GV, Utkin AN, Revichev YF (1984) Prib Tekh Eksp
(Russian) 2:187–190
4. Girichev GV, Shlykov SA, Revichev YF (1986) Prib Tekh Eksp
(Russian) 4
5. Shlykov SA, Girichev GV (1988) Prib Tekh Eksp (Russian)
t
Cu(pc) and Cu(pc ) shows that the tert-butyl substituents in
the ring have a minor effect on the geometry of the coor-
dination center. According to NBO and AIM analyses of
2
:141–142
16. Girichev EG, Zakharov AV, Girichev GV, Bazanov MI (2000)
Izv Vysh Uchebn Zaved Technol Text Prom (Russian) 2
7. Tverdova NV, Girichev GV, Giricheva NI, Pimenov OA (2011)
Accurate molecular structure of copper phthalocyanine (CuN8-
t
the electron density distribution in Cu(pc) and Cu(pc ),
1
both molecules are close to ideal ionic compound where
2
the central copper cation Cu surrounded by the anionic
?
32
C H16) determined by gas-phase electron diffraction and quan-
2
-
t 2-
ligand pc and (pc ) . The deviation of the calculated
atomic charges from this ideal model is evidence for the
partly covalent nature of the Cu–N bonds.
tum-chemical calculations. Struct Chem 22(2):319–325
8. Tverdova NV, Pimenov OA, Girichev GV, Shlykov SA, Gir-
icheva NI, Mayzlish VE, Koifman OI (2012) Accurate molecular
1
8 32
structure of nickel phthalocyanine (NiN C H16): gas-phase
electron diffraction and quantum-chemical calculations. J Mol
Struct 1023(12):227–233
9. Tverdova NV, Girichev GV, Krasnov AV, Pimenov OA, Koif-
man OI (2013) The molecular structure, bonding, and energetics
of oxovanadium phthalocyanine: an experimental and computa-
tional study. Struct Chem 24(3):883–890
0. Becke AD (1988) Density-functional exchange-energy approxi-
mation with correct asymptotic behavior. Phys Rev A 38:3098
1. Becke AD (1993) Density-functional thermochemistry. III. The
role of exact exchange. J Chem Phys 98:5648–5652
2. Lee C, Yang W, Parr RG (1988) Development of the Colle-
Salvetti correlation-energy formula into a functional of the
electron density. Phys Rev B Condens Matter 37:785–789
Acknowledgments This work was supported by the Russian
Foundation for Basic Research (Grant No. 13-03-00975a), the Rus-
sian Scientific Foundation (Agreement 14-23-00204), the Deutsche
Forschungsgemeinschaft (core facility GED@BI, Grant Mi477/21-1),
the DAAD ‘‘Mikhail Lomonosov’’ program 2014–2015. Computa-
tional resources were provided by the ‘‘Regionales Rechenzentrum
der Universit a¨ t zu K o¨ ln (RRZK)’’.
1
2
2
2
References
1
. Eley DD, Hazeldine DJ, Palmer TF (1973) Mass spectra, ion-
ization potentials and related properties of metal-free and tran-
sition metal phthalocyanines. J Chem Soc Faraday Trans 2 Mol
Chem Phys 69:1808
. Basova T, Semyannikov P, Plyashkevich V, Hassan A, Igumenov
I (2009) Volatile phthalocyanines: vapor pressure and thermo-
dynamics. Crit Rev Solid State Mater Sci 34:180–189
. Gasstevens MK, Samoc M, Pfleger J, Prasad PN (1990) J Chem
Phys 92:2019
23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient
approximation made simple. Phys Rev Lett 77:3865
24. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent
molecular orbital methods. XII. Further extensions of Gaussian—
type basis sets for use in molecular orbital studies of organic
molecules. J Chem Phys 56:2257–2261
25. Dill JD, Pople JA (1975) Self-consistent molecular orbital
methods. XV. Extended Gaussian-type basis sets for lithium,
beryllium, and boron. J Chem Phys 62:2921–2923
26. Hariharan PC, Pople JA (1973) The influence of polarization
functions on molecular orbital hydrogenation energies. Theor
Chim Acta (Berl) 28(3):213–222
2
3
4
. Guo L, Ma G, Liu Y, Mi J, Qian S, Qiu L (2002) Optical and non-
linear optical properties of vanadium oxide phthalocyanine films.
Appl Phys B 74:253–257
5
6
. Baumann F, Bienert B, Rosch G, Vollmann H, Wolf W (1956)
Angew Chem Int Ed Engl 68:133–150
27. Dunning THJ (1989) Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J Chem Phys 90(2):1007–1023
28. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted
ab initio pseudopotentials for the first row transition elements.
J Chem Phys 86(2):866–872
29. Martin JML, Sundermann A (2001) Correlation consistent
valence basis sets for use with the Stuttgart–Dresden–Bonn rel-
ativistic effective core potentials: the atoms Ga–Kr and In–Xe.
J Chem Phys 114(8):3408–3421
30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant
JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B,
Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada
M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M,
Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox
JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R,
Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C,
. Kurmaev EZ, Shamin SN, Galakhov VR, Moewes A, Otsuka T,
Koizume S, Endo K (2001) Electronic structure of thiophenes and
phtalocyanines. Phys Rev B 64(4):452111–452117
. Berezin BD (1978) Coordination compounds of porphyrins and
phthalocyanines. Nauka, Moscow
. Mastryukov V, Ruan Chong-yu, Fink M (2000) The molecular
structure of copper- and nickel-phthalocyanine as determined by
gas-phase electron diffraction and ab initio/DFT computations.
J Mol Struct 556:225–237
. Finazzo C, Calle C, Stoll S, Van Doorslaer S, Schweigery A
(2006) Matrix effects on copper(II)phthalocyanine complexes. A
combined continuous wave and pulse EPR and DFT study. Phys
Chem Chem Phys 8:1942–1953
7
8
9
1
0. Plyashkevich V, Basova T, Semyannikov P, Hassan A (2010)
Vapour pressure of tetra-tert-butyl substituted phthalocyanines.
Thermochim Acta 501:108–111
1
23