T.P. Jose, S.M. Tuwar / Journal of Molecular Structure 827 (2007) 137–144
143
[3] I.R. Epstein, K. Showalter, J. Phys. Chem. 100 (1996) 13132.
Eq. (9) is verified (Fig. 2) and the kaK3 calculated from the
graph of kobs(autocat) vs. [Cu(II)]. kaK3 value is found to be
[4] F.W. Schneider, A.F. Nichtlineare, Dynamik in der Chemie, Spek-
trum Akademischer Verlag, Heidelberg, Germany, 1996.
[5] I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns and Chaos, Oxford Univer-
sity Press, Oxford, 1998.
[6] R. Field, L. Gyorgyi, Chaos in Chemical and Biochemical Systems,
World Scientific, Singapore, 1993.
[7] K.B. Yatsimirskii, P.E. Strizhak, L.N. Zakrevskaya, Teor. Eksp.
Khim. 27 (1990) 175.
3.17 · 106 dm6 molꢀ2 ꢀ1. Using the data K1, K2, kaK3 and
s
ku, the experimental rate constants are regenerated for
[Cu(II)] variation, compared with the kobs(autocat), and were
found to be in good agreement with each other (Table
2(B)).
Non-variation of rate of reaction with increase in ionic
strength [40] is due to the involvement of non-ionic species
or ionic and neutral species in the rate determining step. It
supports the mechanisms of Schemes 1 and 2 as non-ionic
species like MPC and negatively charged threonine are
involved.
[8] K.B. Yatsimirskii, L.N. Zakrevskaya, P.E. Strizhak, E.V. Rybak-
Akimova, Chem. Phys. Lett. 186 (1991) 15.
[9] W.G. Movius, Inorg. Chem. 12 (1973) 31.
[10] G. Beck, Mikrochem. 39 (1952) 313;
Z. Kovat, Acta. Chim. hung. 21 (1959) 247;
Z. Kovat, Acta. Chim. hung. 22 (1960) 313.
Increase in rate with decreasing of the dielectric constant
[41] of the media is due to the interaction of a negatively
charged threonine and a polar molecule, monoperiodato-
cuprate(III), to give a less solvating activated complex in
a polar solvent than the reactants alone. It may be due to
the loss of degree of freedom in the activated complex to
give a rigid sphere. Dealing with the activation parameters
for the reaction is complicated as it involves autocatalysis
by Cu(II). However, the large negative value of entropy
activation [42] (Table 3) and high positive value of DG#
explain the loss of degree of freedom in the activated com-
plex which might be a rigid sphere.
The large negative value of entropy of activation,
enhancing the rate in lower dielectric medium and non-var-
iation of rate with ionic strength variation, clearly envisag-
es the transfer of electron from substrate to oxidant in an
outer sphere mechanism. It is also supported by the fact
that the derived small rate constant, ku = 38.1
dm3 molꢀ1 sꢀ1, entrenches the outer sphere mechanism.
[11] M.G. Ram Reddy, B. Sethuram, T. Navaneeth Rao, Indian J. Chem.
A 16 (1978) 31.
[12] K. Bal Reddy, B. Sethuram, T. Navaneeth Rao, Indian J. Chem. A 20
(1981) 395;
J. Padmavati, K. Yusiff, Transit. Metal Chem. 6 (2001) 315.
[13] D.S. Mahadevappa, K.S. Rangappa, N.N.M. Gouda, B. Thimmego-
uda, Int. J. Chem. Kinet. 14 (1982) 1183;
K. Balreddy, B. Sethuram, T. Navaneeth Rao, Indian J. Chem. A 20
(1981) 395.
[14] J. Szammer, M. Jaky, O.V. Germasimov, Int. J. Chem. Kinet. 24
(1992) 145.
[15] L.I. Simandi, M. Jacky, C.R. Savage, Z.A. Schelly, J. Am. Chem.
Soc. 107 (1985) 4220.
[16] S. Nadimpalli, R. Rallabandi, L.S.A. Dikshitulu, Transit. Metal
Chem. 18 (1993) 510.
[17] M.K. Mahanti, D. Laloo, J. Chem. Soc. Dalton Trans. (1990) 311;
R.M. Shanmugam, T.V. Sabburamiyar, J. Chem. Soc. [Perkin II]
(1988) 1341.
[18] K. Balreddy, B. Sethuram, T. Navaneethrao, Indian J. Chem. A 20
(1981) 395.
[19] P. Jayaprakash Rao, B. Sethuram, T. Navaneeth Rao, React. Kinet.
Catal. Lett. 29 (1985) 289.
[20] M. Adinarayana, B. Sethuram, T. Navaneeth Rao, J. Indian Chem.
Soc. 53 (1976) 887.
4. Summary
[21] R.M. Shanmugam, T.V. Sabburamiyar, J. Chem. Soc. [Perkin II]
(1988) 1341.
[22] M.K. Mahanti, D. Laloo, J. Chem. Soc. Dalton Trans. (1990) 311.
[23] K. Balreddy, B. Sethuram, T. Navaneethrao, Indian J. Chem. A 20
(1981) 395.
[24] P.K. Jaiswal, K.L. Yadava, Indian J. Chem. 11 (1973) 837;
C.P. Murthy, B. Sethuram, T. Navaneeth Rao, Z. Phys. Chem. 262
(1981) 336.
[25] G.H. Jeffery, J.M. Bassett, J. Mendham, R.C. Denny, Vogels’ Text
book of Quantitative Chemical Analysis, Fifth ed., ELBS, Longman,
UK, 1996 (a) p. 455, (b) p. 371.
[26] G.P. Panigrahi, P.K. Misro, Indian J. Chem. A 16 (1978) 201.
[27] F. Feigl, Spot Tests in Organic Analysis, New York, 1975, p.195.
[28] G. Svehla, A.I. Vogel’s Qualitative Inorganic Analysis, Seventh ed.,
Longman Ltd, London, 1998, p.85.
Among various species of DPC in alkaline medium,
monoperiodatocuprate (MPC) is considered as active spe-
cies for the title reaction. One of the products Cu(II) catal-
yses the reaction. The reaction proceeds through the
intervention free radicals. Equilibrium constants involved
in the mechanism and activation parameters of the reaction
were evaluated. The overall mechanistic sequence described
here is consistent with product studies, mechanistic studies
and kinetic studies.
Acknowledgements
[29] A.K. Dass, M. Dass, J. Chem. Soc. Dalton Trans. (1994) 589.
[30] L.J. Ballamy, The IR Spectra of Complex Molecules, Second ed.,
Methuen and Co, London, 1958, p.425.
[31] D.R. Lide, CRC Hand Book of Chemistry and Physics, Seventy-third
ed., CRC press, London, 1992, p. 8.
One of the authors S.M. Tuwar thanks the UGC,
Regional Office Bangalore, for providing financial
assistance.
[32] I.M. Kolthoff, E.J. Meehan, E.M. Carr, J. Am. Chem. Soc. 75 (1953)
1439;
S. Bhattacharya, P. Benerjee, Bull. Chem. Soc. Jpn. 69 (1996) 3475.
[33] G.I. Rozovoskii, A. Misevicius, A.Yu. Prokopchik, Zh. Neorg.
Khim. 16 (1971) 3265.
[34] C.E. Crouthamel, H.V. Meck, D.S. Martin, C.V. Banks, J. Am.
Chem. Soc. 73 (1951) 82.
[35] M.W. Lister, Can. J. Chem. 31 (1953) 638.
References
[1] R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical
Systems, Wiley-Interscience, New York, 1985.
[2] S.K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics,
Oxford University Press, Oxford, 1994.