Temperature-Controlled Heterocyclic Rearrangement
SCHEME 1. General Scheme of the Boulton-Katritzky
Rearrangement (BKR)
SCHEME 2
sists of an interconversion between two five-membered hetero-
cycles where a three-atom side chain and a pivotal annular
nitrogen are involved (Scheme 1).4 This reaction is widely
documented in the literature because of its application in the
synthesis of several target molecules2c,4,5 as well as for the
intriguing mechanistic aspects.6 This reaction, also classified
as an internal nucleophilic substitution,5a,b,6a-f,7 typically occurs
on 1-oxa-2-azoles (1; D ) O) that are O-N bond-containing
five-membered heterocycles [isoxazoles,5a,b 1,2,4-oxadiazoles,5
1,2,5-oxadiazoles (furazans),5a,b and 1,2,5-oxadiazole-2-oxides
(furoxans)5a,b,8].
(the intrinsic ring stability, the nature and position of the
substituents, etc.) become important in determining the direction
of the equilibrium and, in some cases, the irreversibility of the
reaction. Some typical rearrangements of this kind, referred to
the 1,2,4-oxadiazole ring as a substrate, are (Scheme 2) (i) the
stereospecific spontaneous irreversible transformation of Z-
oximes of 3-acyl-1,2,4-oxadiazoles 3 into the corresponding
3-acylamino-1,2,5-oxadiazoles (furazans) 4;10,11 (ii) the base-
catalyzed interconversion between 3-(o-hydroxyphenyl)-1,2,4-
oxadiazoles 5 and 3-acylamino-benzisoxazoles 6, where the
equilibrium composition depends on factors such as the type
of base used (strong bases favoring the oxadiazole) and the
nature of the R substituent;12 and (iii) the irreversible base-
catalyzed rearrangement of the enolate form of 3-acetonyl-1,2,4-
oxadiazoles 7 into the corresponding 3-acylaminoisoxazoles 8.13
In turn, the rearrangement of isoxazole (8; R ) Ar) into oxazole
9 has been reported by heating in DMF in the presence of
t-BuOK and was suggested to occur through a ring contraction-
ring expansion (RCRE) mechanism involving a deprotonated
form of the starting acylaminoisoxazole 8.14
When the nucleophilic Z atom in the side chain attacks the
electrophilic N(2) ring nitrogen, the O(1) ring oxygen in (1; D
) O) acts as an internal leaving group and the O-N bond is
cleaved. When the Z atom is different from oxygen (for instance,
Z ) N, S, C), the process is irreversible, the driving force being
the formation of a more stable N-N, S-N, or C-N bond
replacing the less stable O-N bond. In this case, the reactivity
toward the BKR will be determined by the structure of the
starting heterocycle, the nucleophilic character of the Z atom,
the nature of the solvent, and the possible presence of a base.9
On the other hand, when Z is also an oxygen atom (1; D ) Z
) O), the reaction is potentially reversible since an O-N bond
is broken and a new one is formed. In such a case, other factors
(3) (a) Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Hetero-
cycles in Life and Society; Wiley: Chichester, UK, 1997. (b) ComprehensiVe
Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds; Pergamon
Press: Oxford, 1984; Vol. 1.
(4) (a) Boulton, A. J.; Katritzky, A. R.; Hamid, A. M. J. Chem. Soc. (C)
1967, 2005-2007. (b) Afridi, A. S.; Katritzky, A. R.; Ramsden, C. A. J.
Chem. Soc., Perkin Trans. 1 1976, 315-320.
(5) (a) Ruccia, M.; Vivona, N.; Spinelli, D. AdV. Heterocycl. Chem. 1981,
29, 141-169. (b) Vivona, N.; Buscemi, S.; Frenna, V.; Cusmano, G. AdV.
Heterocycl. Chem. 1993, 56, 49-154. (c) Korbonits, D.; Kanzel-Szvoboda,
I.; Horva´th, K. J. Chem. Soc., Perkin Trans. 1 1982, 759-766. (d) Horva´th,
K.; Korbonits, D.; Nara´y-Szabo`, G.; Simon, K. J. Mol. Struct. (THEOCHEM)
1986, 136, 215-227.
(9) The base catalysis increases the nucleophilic character of the ZH
side-chain moiety. Nevertheless, the occurrence of an acid-catalyzed pathway
has been recently observed for the BKR of Z-arylhydrazones of 3-benzoyl-
5-amino-1,2,4-oxadiazole into 1,2,3-triazoles.6b,c,e Moreover, copper(II)
acetate catalysis has been reported for the BKR of some arylhydrazones of
3-benzoyl-1-oxa-2-azoles. Buscemi, S.; Frenna, V.; Vivona, N.; Spinelli,
D. J. Chem. Soc., Perkin Trans. 1 1993, 2491-2493.
(10) (a) Vivona, N.; Frenna, V.; Buscemi, S.; Ruccia, M. J. Heterocycl.
Chem. 1985, 22, 97-99. (b) Vivona, N.; Buscemi, S.; Frenna, V.; Ruccia,
M.; Condo`, M. J. Chem. Res. (M) 1985, 2184-2197; (S) 1985, 190. (c)
Andrianov, V. G.; Eremeev, A. V. Chem. Heterocycl. Compd. (Engl. Transl.)
1990, 26, 1199-1213.
(6) For recent mechanistic studies on azole-to-azole interconversion
reactions of the Boulton-Katritzky type, see: (a) Cosimelli, B.; Guernelli,
S.; Spinelli, D.; Buscemi, S.; Frenna, V.; Macaluso, G. J. Org. Chem. 2001,
66, 6124-6129. (b) Cosimelli, B.; Frenna, V.; Guernelli, S.; Lanza, C. Z.;
Macaluso, G.; Petrillo, G.; Spinelli, D. J. Org. Chem. 2002, 67, 8010-
8018. (c) D’Anna, F.; Frenna, V.; Macaluso, G.; Morganti, S.; Nitti, P.;
Pace, V.; Spinelli, D.; Spisani, R. J. Org. Chem. 2004, 69, 8718-8722. (d)
D’Anna, F.; Ferroni, F.; Frenna, V.; Guernelli, S.; Lanza, C. Z.; Macaluso,
G.; Pace, V.; Petrillo, G.; Spinelli, D.; Spisani, R. Tetrahedron 2005, 61,
167-178. (e) D’Anna, F.; Frenna, V.; Macaluso, G.; Marullo, S.; Morganti,
S.; Pace, V.; Spinelli, D.; Spisani, R.; Tavani, C. J. Org. Chem. 2006, 71,
5616-5624. For DFT studies on monocyclic BKR, see: (f) Bottoni, A.;
Frenna, V.; Lanza, C. Z.; Macaluso, G.; Spinelli, D. J. Phys. Chem. A 2004,
108, 1731-1740. Moreover, for DFT studies on bicyclic BKR, see for
example: (g) Eckert, F.; Rauhut, G. J. Am. Chem. Soc. 1998, 120, 13478-
13484. (h) Rauhut, G. J. Org. Chem. 2001, 66, 5444-5448. (i) Pen˜a-
Gallego, A.; Rodr´ıguez-Otero, J.; Cabaleiro-Lago, E. M. J. Org. Chem.
2004, 69, 7013-7017.
(11) Interestingly, the transformation of 1,2,5-oxadiazole-2-oxides into
1,2,4-oxadiazoles has been claimed as a first step along two cascade BKRs
of 3-arylazo-4-acylaminofuroxans into 4-amino-5-nitro-2H-1,2,3-triazoles.8c
See also: (a) Baryshnikova, E. L.; Kulikov, A. S.; Ovchinnikov, I. V.;
Solomentsev, V. S.; Makhova, N. N. MendeleeV Commun. 2001, 230-
232. (b) Molotov, S. I.; Kulikov, A. S.; Strelenko, Yu. A.; Makhova, N.
N.; Lyssenko, K. A. Russ. Chem. Bull. (Engl. Transl.) 2003, 52, 1829-
1834.
(12) Harsani, K. J. Heterocycl. Chem. 1973, 10, 957-961.
(13) Ku¨bel, B. Monatsh. Chem. 1983, 114, 373-376. For a similar
rearrangement leading to a 5-trifluoromethylisoxazole, see: Sumimoto, S.;
Ishizuka, I.; Ueda, S; Takase, A.; Okuno, K. Jpn. Patent 01009978, 1989;
Chem. Abstr. 1989, 111, 57722.
(14) Buscemi, S.; Frenna, V.; Vivona, N. Heterocycles 1991, 32, 1765-
1772.
(15) (a) Vivona, N.; Ruccia, M.; Cusmano, G.; Marino, M. L.; Spinelli,
D. J. Heterocycl. Chem. 1975, 12, 1327-1328. (b) La Manna, G.; Buscemi,
S.; Frenna, V.; Vivona, N.; Spinelli, D. Heterocycles 1991, 32, 1547-1557.
(c) Andrianov, V. G.; Makushenkov, S. V.; Eremeev, A. V. MendeleeV
Commun. 1992, 129-130. (d) Buscemi, S.; Frenna, V.; Vivona, N.; Petrillo,
G.; Spinelli, D. Tetrahedron 1995, 51, 5133-5142. (e) La Manna, G.;
Buscemi, S.; Vivona, N. J. Mol. Struct. (THEOCHEM) 1998, 452, 67-74.
(f) Buscemi, S.; Frenna, V.; Pace, A.; Vivona, N.; Cosimelli, B.; Spinelli,
D. Eur. J. Org. Chem. 2002, 1417-1423. (g) Buscemi, S.; Pace, A.; Frenna,
V.; Vivona, N. Heterocycles 2002, 57, 811-823.
(7) Vivona, N.; Cusmano, G.; Ruccia, M.; Spinelli, D. J. Heterocycl.
Chem. 1975, 12, 985-988.
(8) See for example: (a) Boulton, A. J.; Frank, F.; Huckstep, M. R. Gazz.
Chim. Ital. 1982, 112, 181-183. (b) Sheremetev, A. B.; Makhova, N. N.;
Friedrichsen, W. AdV. Heterocycl. Chem., 2001, 78, 66-188. (c) Makhova,
N. N.; Ovchinnikov, I. V.; Kulikov, A. S.; Molotov, S. I.; Baryshnikova,
E. L. Pure Appl. Chem. 2004, 76, 1691-1703.
J. Org. Chem, Vol. 72, No. 20, 2007 7657