Organometallics
Article
with 2 mL of 10% aqueous NaOH solution upon stirring for 2 h at
room temperature. The organic layer was extracted with diethyl ether
(3 × 4 mL) and dried over anhydrous Na2SO4. The solvent was
removed in vacuo at 40 °C to yield the corresponding alcohol.
General Method of Aldehyde Hydrosilylation Using 0.005
mol % 2 (0.01 mol % Relative to Mn). In the glovebox, a 100 mL
round-bottom flask was charged with 0.0014 g of 2 (0.0011 mmol). To
the catalyst, an equimolar mixture of PhSiH3 (22.6 mmol) and
aldehyde (22.6 mmol) was added. CAUTION: This reaction is
exothermic and vigorous bubbling occurs, which we believe is due to
reactant vaporization. After 2 min, the reaction was exposed to oxygen
to deactivate the catalyst. The colorless solution obtained was filtered
REFERENCES
■
(1) Hudlicky, M. Reductions in Organic Chemistry, 2nd ed.; American
́
Chemical Society: Washington, DC, 1996.
(2) (a) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides
in Organic Synthesis, 2nd ed.; Wiley-VCH: New York, 1997. (b) Abdel-
Magid, A. F. Reductions in Organic Synthesis; American Chemical
Society: Washington, DC, 1996.
(3) Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses;
Academic Press: New York, NY, 1979.
(4) Ojima, I. Chem. Org. Silicon Compd. 1989, 2, 1479−1526.
(5) For an influential example, see Ojima, I.; Kogure, T.
Organometallics 1982, 1, 1390−1399.
1
through Celite and analyzed by H NMR spectroscopy to determine
(6) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry;
University Science Books: Sausalito, CA, 1987. (b) Hartwig, J. F.
Organotransition Metal Chemistry − From Bonding to Catalysis;
University Science Books: Sausalito, CA, 2010.
the percent conversion. The fractions were recombined and
hydrolyzed with 2 mL of 10% aqueous NaOH solution upon stirring
for 2 h at room temperature. The organic layer was extracted with
diethyl ether (3 × 4 mL) and dried over anhydrous Na2SO4. The
solvent was removed in vacuo at 40 °C to yield the corresponding
alcohol.
(7) Leading Fe carbonyl hydrosilylation catalysts according to TOF:
(a) Yang, J.; Tilley, T. D. Angew. Chem., Int. Ed. 2010, 49, 10186−
10188. (b) Ruddy, A. J.; Kelly, C. M.; Crawford, S. M.; Wheaton, C.
A.; Sydora, O. L.; Small, B. L.; Stradiotto, M.; Turculet, L.
Organometallics 2013, 32, 5581−5588.
General Method of Formate Dihydrosilylation Using 0.01
mol % 2 (0.02 mol % Relative to Mn). In the glovebox, a 100 mL
round-bottom flask was charged with 0.002 g of 2 (0.002 mmol). To
the catalyst, an equimolar mixture of PhSiH3 (20.0 mmol) and formate
(20.0 mmol) was added. CAUTION: This reaction is exothermic and
vigorous bubbling occurs, which we believe is due to reactant
vaporization. After 30 min, the reaction was exposed to oxygen to
deactivate the catalyst. The colorless solution obtained was filtered
(8) Leading Co carbonyl hydrosilylation catalysts according to TOF:
(a) Niu, Q.; Sun, H.; Li, X.; Klein, H.-F.; Florke, U. Organometallics
̈
2013, 32, 5235−5238. (b) Nesbit, M. A.; Suess, D. L. M.; Peters, J. C.
Organometallics 2015, 34, 4741−4752.
1
through Celite and analyzed by H NMR spectroscopy to determine
(9) Leading Ni carbonyl hydrosilylation catalysts according to TOF:
(a) Postigo, L.; Royo, B. Adv. Synth. Catal. 2012, 354, 2613−2618.
(b) Bheeter, L. P.; Henrion, M.; Brelot, L.; Darcel, C.; Chetcuti, M. J.;
Sortais, J.-B.; Ritleng, V. Adv. Synth. Catal. 2012, 354, 2619−2624.
(10) Leading Cu carbonyl hydrosilylation catalysts according to
TOF: (a) Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am.
Chem. Soc. 2003, 125, 8779−8789. (b) Wu, J.; Ji, J.-X.; Chan, A. S. C.
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3570−3575.
the percent conversion. The fractions were recombined and
hydrolyzed with 2 mL of 10% aqueous NaOH solution upon stirring
for 2 h at room temperature. The organic layer was extracted with
diethyl ether (3 × 4 mL) and dried over anhydrous Na2SO4. The
solvent was removed in vacuo at 40 °C to yield the corresponding
alcohol.
(11) Leading Zn carbonyl hydrosilylation catalysts according to
TOF: (a) Rit, A.; Zanardi, A.; Spaniol, T. P.; Maron, L.; Okuda, J.
Angew. Chem., Int. Ed. 2014, 53, 13273−13277. (b) Sattler, W.;
Ruccolo, S.; Chaijan, M. R.; Allah, T. N.; Parkin, G. Organometallics
2015, 34, 4717−4731.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(12) (a) Trovitch, R. J. Synlett 2014, 25, 1638−1642. (b) Valyaev, D.
A.; Lavigne, G.; Lugan, N. Coord. Chem. Rev. 2016, 308, 191−235.
(13) Manganese carbonyl reduction catalysts that utilize H2 or
boranes have recently been described. See (a) Zhang, G.; Zeng, H.;
Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. C. Angew. Chem., Int. Ed. 2016,
55, 14369−14372. (b) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.;
Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. J.
Am. Chem. Soc. 2016, 138, 8809−8814. (c) Kallmeier, F.; Irrgang, T.;
Dietel, T.; Kempe, R. Angew. Chem., Int. Ed. 2016, 55, 11806−11809.
Compound characterization, metrical parameters for 2
and detailed hydrosilylation procedures (PDF)
Accession Codes
CCDC 1552985 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
(d) Zirakzadeh, A.; de Aguiar, S. R. M. M.; Stoger, B.; Widhalm, M.;
̈
Kirchner, K. ChemCatChem 2017, 9, 1744−1748. (e) Widegren, M. B.;
Harkness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L. Angew.
Chem., Int. Ed. 2017, 56, 5825−5828. (f) Vasilenko, V.; Blasius, C. K.;
Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2017, 56, 8393−
8397.
AUTHOR INFORMATION
Corresponding Author
■
(14) Cavanaugh, M. B.; Gregg, B. T.; Cutler, A. R. Organometallics
1996, 15, 2764−2769.
(15) This paper describes the conversion of esters into ethers via
deoxygenation as opposed to ester dihydrosilylation to yield a mixture
of silyl ethers. Mao, Z.; Gregg, B. T.; Cutler, A. R. J. Am. Chem. Soc.
1995, 117, 10139−10140.
ORCID
Notes
The authors declare no competing financial interest.
(16) (a) Son, S. U.; Paik, S.-J.; Lee, I. S.; Lee, Y.-A.; Chung, Y. K.;
Seok, W. K.; Lee, H. N. Organometallics 1999, 18, 4114−4118.
(b) Son, S. U.; Paik, S.-J.; Chung, Y. K. J. Mol. Catal. A: Chem. 2000,
151, 87−90. (c) Zheng, J.; Chevance, S.; Darcel, C.; Sortais, J.-B.
Chem. Commun. 2013, 49, 10010−10012. (d) Zheng, J.; Elangovan, S.;
ACKNOWLEDGMENTS
■
This material is based upon work supported by the National
Science Foundation under Grant No. 1651686. Acknowledge-
ment is also made to the Donors of the American Chemical
Society Petroleum Research Fund for support of this research.
We acknowledge Dr. Brian R. Cherry for NMR assistance.
́
Valyaev, D. A.; Brousses, R.; Cesar, V.; Sortais, J.-B.; Darcel, C.; Lugan,
N.; Lavigne, G. Adv. Synth. Catal. 2014, 356, 1093−1097. (e) Valyaev,
D. A.; Wei, D.; Elangovan, S.; Cavailles, M.; Dorcet, V.; Sortais, J.-B.;
Darcel, C.; Lugan, N. Organometallics 2016, 35, 4090−4098.
F
Organometallics XXXX, XXX, XXX−XXX