1638
O. Miyata et al.
PAPER
Table 2 Spectral Data for Indoles 13 and Indolines 14 (continued)
Product
Mp
1H NMR (300 MHz, CDCl3 / TMS)
(ppm), J (Hz)
IR
(cm–1)
Molecular For- HRMS (m/z)
mula
(°C)a
14c
92–94
0.95 (d, 3H, J = 7.5), 1.58–1.73 (m, 2H), 1.95 (m, 1H), 2.35– 3442, 3024, 1740, C20H19F3N2O
360.1445
2.57 (m, 2H), 4.12 (dd, 1H, J = 8.0, 2.0), 6.39 (d, 1H, J =
8.0), 6.71 (br s, 1H), 6.78 (td, 1H, J = 8.0, 1.0), 7.02 (br t,
1H, J = 8.0), 7.14 (br d, 1H, J = 8.0), 7.24 (m, 3H), 7.41 (m,
2H)
1593, 1497
13d
13e6
14e
–
–
–
0.98 (t, 3H, J = 8.0), 2.34 (s, 3H), 2.68 (q, 2H, J = 8.0), 7.07 3009, 1598, 1500, C17H17N
(m, 3H), 7.32 (m, 2H), 7.49 (m, 4H) 1206
235.1374
157.0891
270.0962
2.52 (br quint, 2H, J = 8.0), 2.84 (pseudo-t, 4H, J = 8.0), 7.07 3477, 1666, 1611, C11H11N
(m, 2H), 7.28 (m, 1H), 7.42 (m, 1H), 7.76 (br s, 1H)
1468, 1228
1.66 (m, 1H), 1.74–1.88 (m, 2H), 2.20 (m, 1H), 2.31–2.42
3424, 2963, 1720, C13H13F3N2O
(m, 2H), 3.69 (dd, 1H, J = 8.5, 2.0, 1H), 4.67 (br s, 1H), 6.57 1611, 1486
(dd, 1H, J = 7.0, 1.0), 6.78 (td, 1H, J = 7.0, 1.0), 6.79 (br s,
1H), 7.07 (m, 2H)
13f7
14f
–
–
–
2.52 (br quint, 2H, J = 7.0), 2.82 (pseudo-t, 4H, J = 7.5), 3.84 3478, 2956, 1667, C12H13NO
(s, 3H), 6.74 (dd, 1H, J = 8.5, 2.0), 6.91 (d, 1H, J = 2.0), 7.17 1603, 1585, 1466
187.1007
300.1095
171.1048
(br d, 1H, J = 8.5), 7.71 (br s, 1H)
1296, 1228
1.66 (m, 1H), 1.82 (m, 2H), 2.08 (m, 1H), 2.40 (m, 2H), 3.72 3478, 1750, 1601, C14H15F3N2O2
(br d, 1H, J = 8.0), 3.75 (s, 3H), 4.31 (br s, 1H), 6.52 (br d, 1466, 1296, 1204
1H, J = 8.0), 6.65 (dd, 1H, J = 8.0, 2.0), 6.67 (d, 1H, J = 2.0)
13g8
2.43 (s, 3H), 2.52 (br quint, 2H, J = 7.0), 2.80 (pseudo-t, 4H, 3478, 1516, 1190, C12H13N
J = 7.0), 6.91 (br dd, 1H, J = 8.0, 1.0), 7.17 (br d, 1H, J =
8.0), 7.22 (br d, 1H, J = 1.0), 7.71 (br s, 1H)
804, 591
a Mps are not given for oily products.
(3) Reviews of Fischer indole synthesis: (a) Robinson, B.
Chem. Rev. 1963, 63, 373. (b) Robinson, B. Chem. Rev.
1969, 69, 227. (c) Ishii, H. Acc. Chem. Res. 1981, 14, 275.
(d) Robinson, B. The Fischer Indole Synthesis; Wiley: New
York, 1982. (e) Hughes, D. L. Org. Prep. Proced. Int. 1993,
25, 609. (f) Murakami, Y. Yakugaku Zasshi 1999, 119, 35.
(g) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 10251.
(4) One-pot synthesis of indole from aldehyde and hydrazine
has been carried out under acidic conditions using 4%
H2SO4: Chen, C.; Senanayake, C. H.; Bill, T. J.; Larsen, R.
D.; Verhaeven, T. R.; Reider, P. J. J. Org. Chem. 1994, 59,
3738.
(5) (a) Miyata, O.; Kimura, Y.; Muroya, K.; Hiramatsu, H.;
Naito, T. Tetrahedron Lett. 1999, 40, 3601. (b) Miyata, O.;
Kimura, Y.; Naito, T. Chem. Commun. 1999, 2429.
(6) Wender, P. A.; Cooper, C. B. Tetrahedron 1986, 42, 2985.
(7) Kempter, G.; Schwalba, M.; Stoss, W.; Walter, K. J. Prakt.
Chem. 1962, 18, 39.
Acknowledgement
This work was supported in part by Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports and Culture,
Japan and a research grant from the Science Research Promotion
Fund of the Japan Private School Promotion Foundation.
References and Notes
(1) For recent reviews: (a) Saxton, J. E. Monoterpenoid Indole
Alkaloids Supplement to Part 4; Wiley: Chichester, 1994.
(b) Saxton, J. E. Nat. Prod. Rep. 1996, 13, 327. (c) Ihara,
M.; Fukumoto, K. Nat. Prod. Rep. 1997, 14, 413.
(d) Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327.
(2) Recent synthesis of indoles: (a) Takeda, A.; Kamijo, S.;
Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662.
(b) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 1551.
(c) Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi,
Y.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791.
(d) Rainier, J. D.; Kennedy, A. R.; Chase, E. Tetrahedron
Lett. 1999, 40, 6325.
(8) Kelly, A. H.; McLead, D. H.; Parrick, J. Can. J. Chem. 1965,
43, 296.
(9) The acylation using 1 equiv of TFAA was not completed.
Synthesis 2001, No. 11, 1635–1638 ISSN 0039-7881 © Thieme Stuttgart · New York