Communication
probe them individually. 6ꢁHis-fused Atg8 was bound on Ni-
NTA agarose resins, and other three Atg enzymes were traced
by fluorescent imaging. In the absence of Atg4, Atg3 and Atg7
made a complex with Atg8, whereas Atg4 dissociated the
Atg8–Atg3–Atg7 complex and solely interacted to Atg8. This
multicolour imaging illuminated a new finding that PE-conju-
gating enzymes (Atg3, Atg7) and PE-deconjugating enzyme
(Atg4) formed complexes with Atg8 in a mutually exclusive
fashion. The utility of the neutral C4N4 fluorophore was further
broadened by live-cell imaging (Figure 6b). Incubation of
seven C4N4 analogues with human hepatocellular carcinoma
(HepG2) cells revealed that the C4N4 fluorophore was scarcely
cytotoxic in the dark and under UV irradiation (365 nm,
2.5 Jcmꢀ2) with decent cell-membrane permeability.[25] Colocali-
zation of 10 and Nile red in HepG2 cells suggested that the ge-
neric C4N4 fluorophore localized at lipid droplets, which can
be manipulated by the installation of compartment-specific
groups to the C4N4 fluorophore in further studies.
[3] a) J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revya-
kin, R. Patel, J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet, L. D.
Liang, T. A. Brown, W. C. Lemon, R. Patel, R. Lu, J. J. Macklin, P. J. Keller,
194; d) H. A. Lin, Y. Sato, Y. Segawa, T. Nishihara, N. Sugimoto, L. T. Scott,
Yang, K. Yu, G. Hong, J. Wang, L. Li, Z. Ma, H. Gao, Y. Zhong, J. Su, A. L.
Antaris, Y. Xia, J. Luo, Y. Liang, H. Dai, Nat. Commun. 2018, 9, 1171;
f) B. M. White, Y. Zhao, T. E. Kawashima, B. P. Branchaud, M. D. Pluth, R.
7058; c) Y. Kubota, K. Kasatani, H. Takai, K. Funabiki, M. Matsui, Dalton
[6] For a comparative view of the C4N4 fluorophore and other fluoro-
phores, see the Supportinig Information.
[8] T. Beppu, K. Tomiguchi, A. Masuhara, Y. J. Pu, H. Katagiri, Angew. Chem.
In conclusion, we developed a new fluorogenic scaffold
characterized by a pyrimidine-based core featuring a C4N4 ele-
mental composition. Two amino and aryl groups on the pyri-
midine core proved essential for intense emission. Generally,
large Stokes shifts and practical levels of quantum yields were
observed, which can be leveraged by facile single-step modu-
lar synthesis. The capability for protein labeling and live-cell
imaging support prospective utilities in bioimaging applica-
tions. The two amino groups allow for further flexible diversifi-
cation to endow additional functionality, which will be ex-
plored in due course.
ˇ
[9] a) F. Bures, RSC Adv. 2014, 4, 58826; b) P. Gautam, C. P. Yu, G. Zhang,
R. J. Durand, S. Gauthier, F. Robin-le Guen, S. Achelle, Eur. J. Org. Chem.
ˇ ˇ
2017, 3, 523; d) M. Klikar, P. le Poul, A. Ruzicka, O. Pytela, A. Barsella,
ˇ
K. D. Dorkenoo, F. Robin-le Guen, F. Bures, S. Achelle, J. Org. Chem.
2017, 82, 9435; e) R. Maitra, J.-H. Chen, C.-H. Hu, H. M. Lee, Eur. J. Org.
Chem. 2017, 40, 5975; f) A. Szukalski, B. Sahraoui, B. Kulyk, C. A. Lazar,
[10] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Pe-
tersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Ja-
nesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmay-
lov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J.
Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzew-
ski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F.
Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staro-
verov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Ren-
dell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,
C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman, and D. J. Fox, Gaussian Inc., Wallingford CT, 2016.
Acknowledgements
This work was financially supported by KAKENHI (17H03025
and 18H04276 in Precisely Designed Catalysts with Customized
Scaffolding) from JSPS and MEXT. Dr. Tomoyuki Kimura is grate-
fully acknowledged for X-ray crystallographic analysis of 2a, 9,
and 10. We thank Dr. K. Matoba, Y. Ishii, and Y. Iwata for techni-
cal support in protein labeling and cell analysis. We are grate-
ful to Dr. R. Sawa, Y. Kubota, Dr. K. Iijima, and Y. Takahashi for
NMR and MS analyses.
[15] J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015,
Conflict of interest
The Institute of Microbial Chemistry (BIKAKEN) has filed a
patent application for the use of C4N4 fluorophores as fluores-
cent materials.
[16] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd, up-
dated and enl. ed., Wiley-VCH, Weinheim, 2003.
Keywords: bioconjugation · fluorescence · live-cell imaging ·
pyrimidine · Stokes shift
[18] Absorption and emission spectra of PEG- C4N4 as a model for bioconju-
gated C4N4 in DMSO/pH 7.4 buffer is shown in the Supporting Informa-
tion.
[20] For the photophysical properties of 17, see the Supporting Information.
[1] a) B. Valeur, M. N. Berberan-Santos, 2nd ed., Wiley-VCH, Weinheim,
2012; b) K. Mꢃllen, U. Scherf, Organic Light Emitting Devices : Synthesis
Properties, and Applications, Wiley-VCH, Weinheim, 2006; c) I. Johnson,
M. T. Z. Spence, The Molecular Probes Handbook: A Guide to Fluorescent
Probes and Labeling Technologies, 11th ed., Life Technologies Corpora-
tion, New York, 2010.
Chem. Eur. J. 2019, 25, 1 – 7
5
ꢀ 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&
&
These are not the final page numbers! ÞÞ