additives can render the substituent dismutation reaction of
arylboranes a powerful tool for the preparation of rather
unique organoborane frameworks.
M. W. gratefully acknowledges financial support by the
Beilstein-Institut, Frankfurt/Main, Germany, within the
research collaboration NanoBiC; A. H. wishes to thank
the Fonds der Chemischen Industrie for a Ph. D. grant.
Notes and references
Fig. 3 The molecular structure and numbering scheme of 7; displace-
1
For selected review articles, see: (a) C. D. Entwistle and
T. B. Marder, Angew. Chem., Int. Ed., 2002, 41, 2927–2931;
ment ellipsoids are drawn at the 50% probability level. Selected bond
˚
˚
lengths [A], atomꢁ ꢁ ꢁatom distance [A], bond angles [1] and dihedral
angle [1]: B(1)–C(1), 1.555(2); B(2)–C(11), 1.557(2); B(1)ꢁ ꢁ ꢁB(2),
(
b) C. D. Entwistle and T. B. Marder, Chem. Mater., 2004, 16,
4574–4585; (c) S. Yamaguchi and A. Wakamiya, Pure Appl.
Chem., 2006, 78, 1413–1424; (d) F. Jakle, Coord. Chem. Rev.,
kle, Chem. Rev., 2010, 110,
1.755(2); C(1)–C(2)–C(12), 122.3(1); C(11)–C(12)–C(2), 122.1(1);
¨
2
3
006, 250, 1107–1121; (e) F. Ja
985–4022.
¨
Ar(C(1))//Ar(C(11)), 3.3.
2
N. Matsumi, K. Naka and Y. Chujo, J. Am. Chem. Soc., 1998, 120,
5112–5113.
Treatment of (Li(Et O)) [6] with excess Me SiCl in Et O
2
2
2
3
1
resulted in the clean formation of 7 (70% yield). A char-
2
3 N. Matsumi, M. Miyata and Y. Chujo, Macromolecules, 1999, 32,
4467–4469.
1
acteristic NMR feature of 7 is the B resonance at 13.7 ppm,
1
4
A. Nagai, T. Murakami, Y. Nagata, K. Kokado and Y. Chujo,
Macromolecules, 2009, 42, 7217–7220.
which is split into a doublet due to coupling with the terminal
1
hydride substituent ( JBH = 120 Hz; coupling to the bridging
5 A. Lorbach, M. Bolte, H. Li, H.-W. Lerner, M. C. Holthausen,
F. Jakle and M. Wagner, Angew. Chem., Int. Ed., 2009, 48,
584–4588.
¨
hydrogen atoms is not resolved). In the proton NMR
spectrum, the boron-bonded hydrogen atoms give rise to a
4
6
A. Lorbach, C. Reus, M. Bolte, H.-W. Lerner and M. Wagner,
Adv. Synth. Catal., 2010, 352, 3443–3449.
featureless signal at 1.30 ppm (2H, BHbridging) and a quartet at
1
.77 ppm (2H, JHB = 120 Hz, BHterminal). An X-ray crystal
7 A. Lorbach, M. Bolte, H.-W. Lerner and M. Wagner, Chem.
Commun., 2010, 46, 3592–3594.
4
0
structure analysis of 7 revealed an almost planar 2,2 -biphenyl
8
A. Lorbach, M. Bolte, H.-W. Lerner and M. Wagner, Organo-
metallics, 2010, 29, 5762–5765.
fragment, bridged by a (H)B(m-H) B(H) moiety (Fig. 3).
2
˚
The average B–C distance amounts to 1.556(2) A; the
9 A. Hu
M. C. Holthausen and M. Wagner, J. Am. Chem. Soc., 2011,
33, 4596–4609.
¨
bner, Z.-W. Qu, U. Englert, M. Bolte, H.-W. Lerner,
˚
˚
B(1)ꢁ ꢁ ꢁB(2) distance is 1.755(2) A (cf. Bꢁ ꢁ ꢁB = 1.76(1) A in
1
1
3
9
˚ ˚
5
and 1.806(6) A/1.800(4) A in [2] ). The synthesis
B
H
2 6
1
0 E. G. IJpeij, F. H. Beijer, H. J. Arts, C. Newton, J. G. de Vries and
G.-J. M. Gruter, J. Org. Chem., 2002, 67, 169–176. 4: we have
developed an optimised alternative synthesis, which is described in
the ESIw; 5: in our hands, recrystallisation of the crude material
gave the anhydride rather than the diboronic acid; cf. the ESIw for
X-ray crystal structure analyses of 4 and 5.
sequence outlined in Scheme 1 thus provides convenient access
to a so far largely unexplored class of bridged organo-
5
diboranes(6) in general and to the simplest [2] repeat-unit
model in particular.
Addition of excess DMS to 7 led to a ring-contraction
reaction which gave the 9-H-9-borafluorene DMS adduct
11 D. Franz, M. Bolte, H.-W. Lerner and M. Wagner, Dalton Trans.,
011, 40, 2433–2440.
2 Compound 7 has already been mentioned by Ko
obtained a sample via a high-temperature reaction involving
pyrophoric boranes: R. Koster and H.-G. Willemsen, Justus
Liebigs Ann. Chem., 1974, 1843–1850.
2
1
¨
ster et al. who
2
(DMS) on the one hand and H B(DMS) on the other. Thus,
3
the insertion of compounds R BH
n
(n = 0, 1) into 9-bora-
¨
(3ꢀn)
fluorenes with formation of 7-type species is obviously
1
4
13 D. S. Jones and W. N. Lipscomb, Acta Crystallogr., Sect. A, 1970,
A26, 196–207.
reversible when appropriate Lewis bases are added. We
therefore suggest that a careful adjustment of reaction condi-
tions together with the appropriate choice of Lewis basic
1
4 B. Wrackmeyer, P. Thoma, R. Kempe and G. Glatz, Collect.
Czech. Chem. Commun., 2010, 75, 743–756.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11339–11341 11341