Trans–cis isomerization energies of azopyridines: a calorimetric and computational study
11. Han K, Su W, Zhong M, Yan Q, Luo Y, Zhang Q, Li Y. Rev-
Conclusions
ersible photocontrolled swelling-shrinking behavior of micron
vesicles self-assembled from azopyridine-containing diblock
copolymer. Macromol Rapid Commun. 2008;29:1866–70.
12. Lin L, Yan Z, Gu J, Zhang Y, Feng Z, Yu Y. UV-responsive
behavior of azopyridine-containing diblock copolymeric vesicles:
photoinduced fusion, disintegration and rearrangement. Macro-
mol Rapid Commun. 2009;30:1089–93.
13. Aoki K, Nakagawa M, Ichimura K. Self-assembly of amphoteric
azopyridine carboxylic acids: organized structures and macro-
scopic organized morphology influenced by heat, pH change, and
light. J Am Chem Soc. 2000;122:10997–1004.
In this work we obtained the isomerization energies of all
three symmetrical azopyridines for the first time by
experiment and quantum chemical calculations. Our
method was validated against the literature value on
azobenzene. The computational results are in reasonable
agreement with experiment and explain the low isomer-
ization energy of 2,20-azopyridine on the basis of a low-
energy cis conformer. Because of the smaller van der
Waals volume of the pyridine N relative to the phenyl CH,
the two aromatic rings in the cc cis isomer can approach
closer to coplanarity, leading to greater p-conjugation and
lower conformational energy. Our results are relevant for
developing azopyridine-based materials. Given their ability
to form hydrogen bonds and metal coordination bonds,
azopyridine molecules may expand the design space for
photo-responsive materials.
14. Baldwin DA, Lever ABP, Parish RV. Complexes of 2,20-azopy-
ridine with iron(II), cobalt(II), nickel(II), copper(I), and cop-
per(II). Infrared study. Inorg Chem. 1969;8:107–15.
¨
15. Dommaschk M, Peters M, Gutzeit F, Schu¨tt C, Nather C,
Sonnichsen FD, Tiwari S, Riedel C, Boretius S, Herges R. Pho-
¨
toswitchable magnetic resonance imaging contrast by improved
light-driven coordination-induced spin state switch. J Am Chem
Soc. 2015;137:7552–5.
16. Brown EV, Granneman GR. Cis–trans isomerism in the pyridyl
analogs of azobenzene. Kinetic and molecular orbital analysis.
J Am Chem Soc. 1975;97:621–7.
17. Frisch MJ, et al. Gaussian 09, revision E.01. Wallingford:
Gaussian, Inc.; 2009.
18. Cammenga HK, Emel’yanenko VN, Verevkin SP. Re-investiga-
tion and data assessment of the isomerization and 2,20-cyclization
of stilbenes and azobenzenes. Ind Eng Chem Res.
2009;48:10120–8.
Acknowledgements We thank the National Science Foundation for
supporting this work through Grant No. DMR-1234320 and through
the University of Wisconsin—Madison MRSEC (DMR-1720415).
19. Humphrey W, Dalke A, Schulten K. VMD—visual molecular
dynamics. J. Molec. Graphics. 1996;14:33–8.
20. Cusati T, Granucci G, Persico M, Spighi G. Oscillator strength
References
1. Hartley GS. The cis-form of azobenzene. Nature. 1937;140:281.
2. Bandara HMD, Burdette SC. Photoisomerization in different
classes of azobenzene. Chem Soc Rev. 2012;41:1809–25.
3. Yager KG, Barrett CJ. Novel photo-switching using azobenzene
functional materials.
2006;182:250–61.
4. Bullock DJW, Cumper CWN, Vogel AI. Physical properties and
chemical constitution. Part 63. The electric dipole moments of
azobenzene, azopyridines, and azoquinolines. J Chem Soc.
1965;5316–23.
5. Wolf E, Cammenga HK. Thermodynamic and kinetic investiga-
tion of the thermal isomerization of cis-azobenzene. Z. Phys.
Chem. (Neue Folge). 1977;107:21–38.
6. Yamada M, Kondo M, Mamiya JI, Yu Y, Kinoshita M, Barrett
CJ, Ikeda T. Photomobile polymer materials: towards light-driven
plastic motors. Angew Chem Int Ed. 2008;47:4986–8.
7. Natansohn A, Rochon P. Photoinduced motions in azo-containing
polymers. Chem Rev. 2002;102:4139–76.
8. Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH,
Trauner D. Photochromic blockers of voltage-gated potassium
channels. Angew Chem Int Ed. 2009;48:9097–101.
and polarization of the forbidden n- [ p* band of trans-
azobenzene:
2008;128:194312.
a
computational study.
J
Chem Phys.
21. Dias AR, da Piedade MEM, Simoes JAM, Simoni JA, Teixeira C,
Diogo HP, Yang M, Pilcher G. Enthalpies of formation of cis-
J Photochem Photobiol A: Chem.
azobenzene and trans-azobenzene.
1992;24:439–47.
J
Chem Thermodyn.
22. Adamson AW, Vogler A, Kunkely H, Wachter R. Pho-
tocalorimetry. Enthalpies of photolysis of trans-azobenzene, fer-
rioxalate and cobaltioxalate ions, chromium hexacarbonyl,
dirhenium dicarbonyl. J Am Chem Soc. 1978;100:1298–300.
23. Harada J, Ogawa K. X-ray diffraction analysis of nonequilibrium
states in crystals: observation of an unstable conformer in flash-
cooled crystals. J Am Chem Soc. 2004;126:3539–44.
24. Mostad A, Rømming C. A refinement of the crystal structure of
cis-azobenzene. Acta Chem Scand. 1971;25:3561–8.
25. Ishikawa T, Noro T, Shoda T. Theoretical study on the photoi-
somerization of azobenzene. J. Chem. Phys. 2001;115:7503–12.
26. Cembran A, Bernardi F, Garavelli M, Gagliardi L, Orlandi G. On
the mechanism of the cis - trans isomerization in the lowest
electronic states of azobenzene: S0, S1, and T1. J Am Chem Soc.
2004;126:3234–43.
9. Campbell N, Henderson AW, Taylor D. Geometrical Isomerism
of Azo-compounds. J. Chem. Soc. 1953;1281–5.
10. Cui L, Zhao Y. Azopyridine side chain polymers: an efficient
way to prepare photoactive liquid crystalline materials through
self-assembly. Chem Mater. 2004;16:2076–82.
123