10.1002/chem.201605637
Chemistry - A European Journal
COMMUNICATION
2011, 47, 4593–4623; f) K. W. Quasdorf, L. E. Overman, Nature 2014, 516,
181–191.
include (a) a transition metal free and operationally simple procedure,
(b) direct use of α-amidosulfones as bench-stable precursors of
sensitive imines, enabling the use of a broad scope of α-amidosulfones,
(c) direct enolization of racemic α-fluoro cyclic ketones and (d)
excellent stereoselectivity with up to 99% ee and >20:1
diastereoselectivity (anti:syn). This protocol was also successfully
extended to generate C-Cl and C-Br quaternary stereogenic centers.
Thus, we believe that this protocol can provide a new approach for the
syntheses of diverse biologically relevant products possessing
quaternary stereogenic C-halogen centers. The extension of this
strategy to the synthesis of quaternary carbon in acyclic systems is
currently underway in our laboratory.
[7]
[8]
a) Y. Zhao, Y. Pan, H. Liu, Y. Yang, Z. Jiang, C.-H. Tan, Chem. Eur. J. 2011,
17, 3571–3574; b) B. M. Trost, T. Saget, A. Lerchen, C.-I. Hung, Angew.
Chem., Int. Ed. 2016, 55, 781–784.
Efficient routes to chiral -fluoroamines bearing tertiary C-F centers via
asymmetric Mannich reactions of carbonyls with imines have also recently
developed independently by the Shibasaki[8a] and Zhao groups[8b]. see.: a) L.
Brewitz, F. A. Arteaga, L. Yin, K. Alagiri, N. Kumagai, M. Shibasaki, J. Am.
Chem. Soc. 2015, 137, 15929–15939; b) H.-Y. Wang, K. Zhang, C.-W. Zheng,
Z. Chai, D.-D. Cao, J.-X. Zhang, G. Zhao, Angew. Chem. Int. Ed. 2015, 54,
1775–1779.
[9]
a) J. W. Lee, H. Yan, H. B. Jang, H. K. Kim, S.-W. Park, S. Lee, D. Y. Chi, C.
E. Song, Angew. Chem. Int. Ed. 2009, 48, 7683–7686; Angew. Chem. 2009,
121, 7819–7822; b) H. Yan, H. B. Jang, J.-W. Lee, H. K. Kim, S. W. Lee, J. W.
Yang, C. E. Song, Angew. Chem. Int. Ed. 2010, 49, 8915–8917; Angew. Chem.
2010, 122, 9099–9101; c) H. Yan, J.-S. Oh, C. E. Song, Org. Biomol. Chem.
2011, 9, 8119–8121; d) H. Yan, J. S. Oh, J.-W. Lee, C. E. Song, Nat. Commun.
2012, 3, 1212; e) S. Y. Park, J.-W. Lee, C. E. Song, Nat. Commun. 2015, 6,
7512; f) L. Li, Y. Liu, Y. Peng, L. Yu, X. Wu, H. Yan, Angew. Chem. Int. Ed.
2016, 55, 331–335; g) J.-W. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y. Chi,
D. W. Kim, C. E. Song, Chem. Soc. Rev. 2016, 45, 4638–4650.
Acknowledgements
This study was supported by the Fundamental Research Funds for the
Central Universities in China (Grant No: 0236015205004), the
Scientific Research Foundation of China (Grant No: 0236011104404),
Graduate Scientific Research and Innovation Foundation of Chongqing,
China (CYB16032) and the Ministry of Science, ICT, and Future
Planning in Korea (Grant No: NRF-2014R1A2A1A01005794 and
NRF-2016R1A4A1011451).
[10] K. Brak , E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534–561.
[11] For reviews, a) M. Petrini, Chem. Rev. 2005, 105, 3949–3977; b) B. Yin, Y.
Zhang, L.-W. Xu, Synthesis 2010, 21, 3583–3595.
[12] Instead of -amido sulfone 3a, the direct use of the corresponding imine gave
comparable catalytic results. The product 4a was obtained in 67% yield with
92% ee for anti-diastereomer (dr = 1:7 for syn : anti).
Keywords: cation-binding catalysis • chiral oligoethylene glycol
catalyst • Mannich reaction • β-fuoroamines • quaternary stereogenic
center
[13] However, acyclic -fluoroketones such as 2-fluoro-1-phenylpropan-1-one and
2-fluoro-3-methyl-1-phenylbutan-1-one did not undergo the reaction under the
same conditions.
[14] a) M. G. Quaglia, N. Desideri, E. Bossu’, R. Sgro, C. Conti, Chirality 1999, 11,
495–500; b) T. Lóránd, B. Kocsis, P. Sohár, G. Nagy, P. József, G. Kispál, R.
László, L. Prókai, Eur. J. Med. Chem. 2002, 37, 803–812; c) P. Zhao, Y.
Iwamoto, I. Kouno, Y. Egami, H. Yamamoto, Phytochemistry 2004, 65, 2455–
2461; d) U. Albrecht, M. Lalk, P. Langer, Bioorg. Med. Chem. 2005, 13,
1531–1536; e) Y. Liu, W. Luo, L. Sun, C. Guo, Drug Discov Ther 2008, 2,
216–218; f) A. E. Nibbs, K. A. Scheidt, Eur. J. Org. Chem. 2012, 449–462; g)
G. Sudhakar, S. Bayya, V. D. Kadama, J. B. Nanubolu, Org. Biomol. Chem.
2014, 12, 5601–5610; h) B. Lee, H. D. Basavarajappa, R. S. Sulaiman, X. Fei,
S.-Y. Seo, T. W. Corson, Org. Biomol. Chem. 2014, 12, 7673–7677; i) Z. Shao,
L. Wang, L. Xu, H. Zhao, J. Xiao, RSC Adv. 2014, 4, 53188–53191; j) Y.-C.
Yu, S. Zhu, X.-W. Lu, Y. Wu, B. Liu, Eur. J. Org. Chem. 2015, 4964–4972.
[15] For a review, a) K. Shibatomi, Synthesis 2010, 16, 2679–2702; For selected
examples, b) X. Han, J. Kwiatkowski, F. Xue, K.-W. Huang, Y. Lu, Angew.
Chem. Int. Ed. 2009, 48, 7604; c) M. Hatano, K. Ishihara, Synthesis 2010, 22,
3785; d) Y. Cai, X. Liu, P. Zhou, Y. Kuang, L. Lin, X. Feng, Chem. Commun.
2013, 49, 8054; e) X. Bao, B. Wang, L. Cui, G. Zhu, Y. He, J. Qu, Y. Song,
Org. Lett. 2015, 17, 5168.
[1]
a) K. Müller, ChemBioChem 2004, 5, 559–562; b) K. Müller, C. Faeh, F.
Diederich, Science 2007, 317, 1881–1886; c) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320−330; d) T. Fujiwara,
D. O’Hagan, J. Fluorine Chem. 2014, 167, 16-29; e) J. Wang, M. Sánchez-
Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A.
Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506; f) A. Harsanyi, G.
Sandford, Green Chem. 2015, 17, 2081−2086.
[2]
[3]
[4]
a) H. Schofield, J. Fluorine Chem. 1999, 100, 7−10; b) F. M. D. Ismail, J.
Fluorine Chem. 2002, 118, 27−33.
J. M. Mason, A. S. Murkin, L. Li, V. L. Schramm, G. J. Gainsford, B. W.
Skelton, J. Med. Chem. 2008, 51, 5880–5884.
a) M. Morgenthaler, E. Schweizer, A. Hoffman-Röder, F. Benini, R. E. Martin,
G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, J. Schneider, F.
Diederich, M. Kansy, K. Müller, ChemMedChem 2007, 2, 1100–1115; b) W.
K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369.
[5]
a) R.-H. Fan, Y.-G. Zhou, W. X. Zhang, X.-L. Hou, L.-X. Dai, J. Org. Chem.
2004, 69, 335–338; b) S. Thibaudeau, A. M. Mingot, M. P. Jouannetaud, O.
Karam, F. Zunino, Chem. Commun. 2007, 3198–3200; c) O. O. Fadeyi, C. W.
Lindsley, Org. Lett. 2009, 11, 943–946; d) Z. Jiang, Y. Pan, Y. Zhao, T. Ma, R.
Lee, Y. Yang, K.-W. Huang, M. W. Wong, C.-H. Tan, Angew. Chem. Int. Ed.
2009, 48, 3627; e) C. Appayee, S. E. Brenner-Moyer, Org. Lett. 2010, 12,
3356; f) B. Duthion, D. G. Pardo, J. Cossy, Org. Lett. 2010, 12, 4620–4623; g)
M. L. Schulte, C. W. Lindsley, Org. Lett. 2011, 13, 5684–5687; h) J. A. Kalow,
D. E. Schmitt, A. G. Doyle, J. Org. Chem. 2012, 77, 4177–4183; i) J. Wu, Y.-
M. Wang, A. Drljevic, V. Rauniyar, R. J. Phipps, F. D. Toste, Proc. Natl. Acad.
Sci. USA 2013, 110, 13729; j) J. A. Kalow, A. G. Doyle, Tetrahedron 2013, 69,
5702; k) H. P. Shunatona, N. Früh, Y.-M. Wang, V. Rauniyar, F. D. Toste,
Angew. Chem. Int. Ed. 2013, 52, 7724; l) K. Fjelbye, M. Marigo, R. P. Clausen,
K. Juhl, Org. Lett. 2016, 18, 1170–1173.
[6]
a) E. J. Corey, A. Guzman-Perez, Angew. Chem. Int. Ed. 1998, 37, 388–401; b)
C. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5363–
5367; c) B. M. Trost, C. Jiang, Synthesis 2006, 369–396; d) M. Bella, T.
Gasperi, Synthesis 2009, 1583–1614; e) J. P. Das, I. Marek, Chem. Commun.
This article is protected by copyright. All rights reserved.