V.S. Padalkar et al.: Fluorescent 1,3,5-trisubstituted triazine derivativesꢀ
ꢀ133
248 (45), 198.3 (32). Anal. Calcd for C19H22ClN7O2: C, 54.87; H, 5.33; N,
23.58. Found: C, 54.92; H, 5.37; N, 23.52.
(DMSO-d6): δ 12.13 (bs, 2H), 9.90 (bs, 2H), 8.05 (dd, 2H, J = 7.4, 1.8 Hz),
7.12 (dd, 2H, J = 7.4, 2.4 Hz), 7.03 (m, 4H), 6.69 (m, 4H), 6.64 (dd, 2H,
J = 9.2, 8.8 Hz), 4.72 (bs, 2H), 3.40 (m, 4H), 3.34 (m, 4H), 1.12 (m, 6H);
13C NMR (DMSO-d6): δ 171.6, 165.4, 162.2, 152.3, 148.7, 138.7, 130.0, 128.9,
124.6, 117.0, 113.1, 72.8, 64.3, 47.5, 15.1. MS: m/z (%) 587 (M+1, 56), 586
(100), 448 (34), 321 (23). Anal. Calcd for C31H34N6O6: C, 63.47; H, 5.84;
N, 14.33. Found: C, 63.52; H, 5.87; N, 14.32.
General procedure for activation
of fluorophore and labeling of protein
Dye 5eꢁYield 1.94 g (84%); yellow solid; mp 263°C (dec.); IR: ν 3728,
Protein labeling was carried out using N-hydroxysuccin-
imide and 1-ethyl-3-(3-dimethyllaminopropyl)carbodii-
mide hydrochloride. Stock solutions of fluorophores
(different concentrations) were prepared in 0.5 mL DMF
and 4.5 mL water. A mixture of 5a–f, 2 molar equivalents of
N-hydroxysuccinimide and 2 molar equivalents of 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide hydrochloride
were stirred at room temperature for 12 h. Then, BSA
(1 mg) was added to corresponding activated dye solution,
and the mixture was stirred for an additional 12 h, after
which time the labeled protein was separated from free
fluorophore by dialysis in phosphate buffer of pH 7 (Singh
et al., 2004).
1
2968, 1652, 1540, 1520, 1339, 1269, 1194, 1009, 784, 740, 699 cm-1; H
NMR (DMSO-d6): δ 12.42 (bs, 2H), 10.82 (m, 2H), 8.03 (dd, 2H, J = 8.0,
2.4 Hz), 7.30 (m, 2H), 7.18 (dd, 2H, J = 8.0, 2.4 Hz), 7.03 (m, 4H), 6.96
(dd, 2H, J = 7.4, 3.4 Hz), 6.63 (dd, 2H, J = 9.0, 2.2 Hz), 4.65 (s, 2H), 3.38
(d, 4H), 3.36 (m, 4H), 3.12 (m, 2H), 1.09 (m, 6H); 13C NMR (DMSO-d6):
δ 175.3, 165.0, 160.1, 150.6, 143.4, 139.0, 137.1, 128.9, 125.6, 122.2, 120.6,
118.6, 112.9, 111.3, 99.7, 73.0, 48.8, 30.1, 14.9; MS: m/z (%) 633 (M+1, 40),
633 (100%), 451 (30). Anal. Calcd for C35H36N8O4: C, 64.44; H, 5.73; N,
17.71. Found: C, 64.80; H, 5.77; N, 17.69.
Dye 5fꢁYield 1.43 g (73%); brown-yellow solid; mp 208–210°C (dec.);
1
IR: ν 3380, 2965, 1566, 1395, 1350, 1268, 1186, 1078, 923, 808 cm-1; H
NMR (DMSO-d6): δ 12.21 (s, 1H), 8.06 (s, 1H), 7.89 (s, 1H), 7.31 (s, 1H),
7.03 (dd, 2H, J = 7.3, 2.4 Hz), 6.63 (dd, 2H, J = 7.3, 2.4 Hz), 4.06 (s, 1H), 3.97
(m, 1H), 3.46 (m, 4H), 3.34 (m, 2H), 1.09 (m, 6H); 13C NMR (DMSO-d6):
δ 177.5, 174.3, 169.0, 162.0, 150.2, 138.0, 132.4, 130.7, 125.6, 118.5, 113.8,
74.0, 48.0, 30.1, 15.4; MS: m/z (%) 414 (M+1, 43), 413 (78), 357 (100),
Received February 3, 2012; accepted April 2, 2012
References
Arai, S.; Yoon, S.; Murata, A.; Takabayashi, M.; Wud, X.; Lu, Y.;
Takeoka, S.; Ozaki, M. Fluorescent “Turn-on” system utilizing
a quencher-conjugated peptide for specific protein labeling
of living cells. Biochem. Biophys. Res. Commun. 2011, 404,
211–216.
Birch, D. Multi-photon excited fluorescence spectroscopy of
biomolecular systems. Spectrochem. Acta A. 2001, 57,
2313–2336.
DiCesare, N.; Lakowicz, J. Evaluation of two synthetic glucose
probes for fluorescence-lifetime-based sensing. Anal.
Biochem. 2001, 294, 154–160.
Duan, Y.; Liu, M.; Sun, W.; Wang, M.; Liu, S.; Li, Q. Recent progress
on synthesis of fluorescein probes. Mini. Rev. Org. Chem.
2009, 6, 35–43.
Flanagan, J.; Legendre, B.; Hammer, R.; Soper, S. Binary solvent
effects in capillary zone electrophoresis with ultrasensitive
near-IR fluorescence detection of related tricarbocyanine dyes
and dye-labeled amino acids. Anal. Chem. 1995, 67,
341–347.
Cao, X.; Lin, W.; Yu, Q. A ratiometric fluorescent probe for thiols
based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin
scaffold. J. Org. Chem. 2011, 76, 7423–7430.
Cheng, J. M. H.; Chee, S. H.; Knight, D. A.; Acha-Orbea, H.; Hermans,
I.; Timmer, M. S. M.; Stocker, B. L. An improved synthesis of
dansylated α-galactosylceramide and its use as a fluorescent
probe for the monitoring of glycolipid uptake by cells.
Carbohydr. Res. 2011, 346, 914–926.
Chiu, D.; Lillard, S.; Scheller, R.; Zare, R.; Rodriguez-Cruz, S.;
Williams, E.; Orwar, O.; Sandberg, M.; Lundqvist, J. Probing
single secretory vesicles with capillary electrophoresis.
Science 1998, 279, 1190–1193.
Fuller, R. R.; Moroz, L. L.; Gillette, R.; Sweedler, J. V. Serotonin
and related molecules in single neurons: direct analysis
of intracellular concentrations by capillary electrophoresis
with fluorescence spectroscopy. Neuron 1998, 20,
173–181.
Gosling, J. A decade of development in immunoassay methodology.
Clin. Chem. 1990, 36, 1408–1427.
Gupta, V.; Padalkar, V.; Phtangare, K.; Patil, V.; Umape, P.; Sekar,
N. Synthesis and photo-physical properties of extended styryl
fluorescent derivatives of N-ethyl carbazole. Dyes Pigments
2011, 88, 378–384.
Han, J.; Burgess, K. Fluorescent indicators for intracellular pH.
Chem. Rev. 2010, 110, 2709–2728.
Haughland, R. Handbook of Fluorescent Probes and Research
Chemicals; Molecular Probes: Eugene, OR, 1992.
Haughland, R. Introduction to Fluorescence Technique; Molecular
Probes Inc.: Eugene, OR, 1996.
Cowley, D.; O’Kane, E.; Todd, R. Triazinylaniline derivatives as
fluorescence probes. Part 1. Absorption and fluorescence in
organic solvents and in aqueous media in relation to twisted
intramolecular charge-transfer state formation, hydrogen
bonding, and protic equilibria. J. Chem. Soc., Perkin Trans.
1991, 2, 1495–1504.
Diamandis, E. Fluorescence spectroscopy. Anal. Chem. 1993, 65,
454R–459R.