Organic Letters
Letter
Scheme 9. Possible Reaction Mechanism
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
(CAREER CHE-1056242 and 1665440). We thank Kevin X.
Rodriguez and Dr. Allen G. Oliver at the University of Notre
Dame for assistance in collecting X-ray crystallographic data.
REFERENCES
■
(1) (a) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; Blakemore, D.
C.; Jones, L. H.; Fadeyi, O. Org. Biomol. Chem. 2016, 14, 6611.
(b) Pitt, W. R.; Parry, D. M.; Perry, B. G.; Groom, C. R. J. Med. Chem.
2009, 52, 2952.
(2) (a) Sutin, L.; Andersson, S.; Bergquist, L.; Castro, V. M.;
Danielsson, E.; James, S.; Henriksson, M.; Johansson, L.; Kaiser, C.;
Flyren, K.; Williams, M. Bioorg. Med. Chem. Lett. 2007, 17, 4837.
(b) Lee, C. M.; Plotnikoff, N. P. J. Med. Chem. 1976, 19, 731.
(c) Dolente, C.; Fasching, B.; Runtz-Schmitt, V.; Schnider, P. Spiro-
Oxazolones. Patent CA2929488 A1, August 27, 2015. (d) Banerjee, R.
G.; Gupta, R. C.; Tuli, D.; Rode, M.; Suthar, B.; Umrani, D.; Pathak,
P.; Choksi, T.; Chaudhary, A. Thiazolinones and oxazolinones and their
use as PTP1B inhibitors. Patent WO2007032028 A1, March 22, 2007.
(3) (a) Shue, Y. K. Tetrahedron Lett. 1996, 37, 6447. (b) Schiff, P. L.
Am. J. Pharm. Educ. 2006, 70, 98.
(4) (a) Trost, B. M.; Hirano, K. Angew. Chem., Int. Ed. 2012, 51,
6480. (b) Misaki, T.; Takimoto, G.; Sugimura, T. J. Am. Chem. Soc.
2010, 132, 6286. (c) Badiola, E.; Fiser, B.; Gomez-Bengoa, E.; Mielgo,
A.; Olaizola, I.; Urruzuno, I.; Garcia, J. M.; Odriozola, J. M.; Razkin, J.;
Oiarbide, M.; Palomo, C. J. Am. Chem. Soc. 2014, 136, 17869.
(d) Trost, B. M.; Dogra, K.; Franzini, M. J. Am. Chem. Soc. 2004, 126,
1944.
(5) (a) Zhu, G.; Yang, J.; Bao, G.; Zhang, M.; Li, J.; Li, Y.; Sun, W.;
Hong, L.; Wang, R. Chem. Commun. 2016, 52, 7882. (b) Zhao, D.;
Wang, L.; Yang, D.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2012,
51, 7523. (c) Xu, M.; Qiao, B.; Duan, S.; Liu, H.; Jiang, Z. Tetrahedron
2014, 70, 8696. (d) Trost, B. M.; Dogra, K.; Franzini, M. J. Am. Chem.
Soc. 2004, 126, 1944. (e) Qiao, B.; An, Y.; Liu, Q.; Yang, W.; Liu, H.;
Shen, J.; Yan, L.; Jiang, Z. Org. Lett. 2013, 15, 2358. (f) Morita, A.;
Misaki, T.; Sugimura, T. Tetrahedron Lett. 2015, 56, 264. (g) Morita,
A.; Misaki, T.; Sugimura, T. Chem. Lett. 2014, 43, 1826. (h) Liu, X.;
Zhang, J.; Ma, S.; Ma, Y.; Wang, R. Chem. Commun. 2014, 50, 15714.
(i) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 377. (j) Wei,
Y.; Liu, Z.; Wu, X.; Fei, J.; Gu, X.; Yuan, X.; Ye, J. Chem. - Eur. J. 2015,
21, 18921.
(6) (a) Ketcha, D. M.; Abou-Gharbia, M.; Smith, F. X.; Swern, D.
Tetrahedron Lett. 1983, 24, 2811. (b) Abou-Gharbia, M.; Ketcha, D.
M.; Zacharias, D. E.; Swern, D. J. Org. Chem. 1985, 50, 2224.
(7) (a) Pfeiffer, J. Y.; Beauchemin, A. M. J. Org. Chem. 2009, 74,
8381. (b) Moran, J.; Pfeiffer, J. Y.; Gorelsky, S. I.; Beauchemin, A. M.
Org. Lett. 2009, 11, 1895.
(8) (a) Ramirez, F.; Desai, N. B.; Ramanathan, N. Tetrahedron Lett.
1963, 4, 323. (b) Ramirez, F.; Smith, C. P. J. Am. Chem. Soc. 1967, 89,
3030. (c) Ramirez, F.; Telefus, C. D.; Prasad, V. A. V. Tetrahedron
1975, 31, 2007. (d) Ramirez, F.; Telefus, C. D. J. Org. Chem. 1969, 34,
376.
(9) (a) Zhao, W.; Fink, D. M.; Labutta, C. A.; Radosevich, A. T. Org.
Lett. 2013, 15, 3090. (b) Wang, S. R.; Radosevich, A. T. Org. Lett.
2015, 17, 3810. (c) Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A.
T. Angew. Chem., Int. Ed. 2012, 51, 10605. (d) Guo, H. C.; Xu, Q. H.;
Kwon, O. J. Am. Chem. Soc. 2009, 131, 6318. (e) Nykaza, T. V.;
Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am.
Chem. Soc. 2017, 139, 6839. (f) Zhao, W.; Yan, P. K.; Radosevich, A.
T. J. Am. Chem. Soc. 2015, 137, 616. (g) Zhao, W.; Radosevich, A. T.
Org. Synth. 2015, 92, 267. (h) Wang, S. R.; Radosevich, A. T. Org. Lett.
2013, 15, 1926.
establishes an equilibrium between dioxaphospholene 3′ and
oxyphosphonium enolate 3. Conversion of amide 4 to aroyl
isocyanate 2 employing (COCl2)2 sets the stage for the
addition of 3 to generate oxyphosphonium 6. Subsequent ring
closure via displacement of OP(NMe2)3 by the imide anion
ultimately provides oxazolone 1. While dissociation of the
phosphoramide generates a stabilized, quaternary carbocation,
the formation of optically enriched oxazolone 1a employing 11
suggests the presence of phosphoramide in the transition state
of ring closure from 6 to 1. However, the modest level of
enantiomeric excess observed would indicate the possibility of
competing associative and dissociative mechanisms.
In conclusion, we have developed a formal trivalent
phosphorus-mediated [4 + 1]-cycloaddition strategy for the
assembly of C5-disubstituted oxazolones employing aroyl
isocyanates as 1,4-dipoles and α-aryl 1,2-dicarbonyls as C1
synthons. Employing α-ketoesters and isatins provided the
corresponding formate-derived and spirooxindole oxazolones in
good to excellent yields, respectively. The optimized reaction
conditions proved exceptionally mild and amenable to scale up.
Studies aimed at exploiting this formal [4 + 1]-cycloaddition
approach to construct heterocyclic motifs of pharmaceutical
and materials significance are currently underway and will be
reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, spectroscopic data, and
crystallographic data (PDF)
Accession Codes
CCDC 1814365 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) (a) Zhou, R.; Zhang, K.; Han, L.; Chen, Y. S.; Li, R. F.; He, Z. J.
Chem. - Eur. J. 2016, 22, 5883. (b) Zhou, R.; Zhang, K.; Chen, Y. S.;
Meng, Q.; Liu, Y. Y.; Li, R. F.; He, Z. J. Chem. Commun. 2015, 51,
14663. (c) Zhan, G.; Shi, M. L.; He, Q.; Du, W.; Chen, Y. C. Org. Lett.
2015, 17, 4750. (d) Xu, S. L.; Zhou, L. L.; Ma, R. Q.; Song, H. B.; He,
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX