Dalton Transactions
Paper
ments were carried out using a microTOF-Q II 10330 mass structures reported in this paper have been deposited with the
spectrometer. IR spectra were measured using a Spectrum Cambridge Crystallographic Data Centre with supplementary
2000 Perkin-Elmer Spectrometer. UV–Vis spectra and Fluo- publication no. CCDC 1413010, 1413011 and 1413012. The
rescence spectra were recorded using a UV-1800 Shimadzu crystallographic data are summarized in Table S1 (ESI†).
Spectrophotometer (1.0 cm quartz cell) and Perkin-Elmer LS
55 Fluorescence spectrometer, respectively. Melting points
were determined using Remco hot-coil stage melting point Acknowledgements
apparatus and are uncorrected.
DS, CK and AK are sincerely thankful to the Indian School of
Mines for the Junior Research Fellowship. SD acknowledges
Erusmus Mundus Action 2 AREAS+ for providing Postdoctoral
General procedure for the synthesis of hydroxyquinoline
phosphate (HQP) and naphthol phosphate (NP)
8-Hydroxyquinoline (1.42 g, 9.78 mmol) was dissolved in 10 ml
fellowship.
dry benzene, followed by the addition of dry Et3N (1 ml). After
cooling the system in an ice bath, POCl3 (0.3 ml, 3.26 mmol)
was added dropwise for 10 minutes. Then the ice bath was
removed and the solution was refluxed for 10 h. After com-
Notes and references
pletion of the reaction, monitored by TLC, the benzene solvent
was removed under vacuum. Then CHCl3 was added to the
reaction mixture and it was filtered. The filtrate was dried and
the crude solid was purified using the column chromatography
technique using chloroform (CHCl3) as eluent to get pure
HQP. For the synthesis of NP, 1-naphthol (1.41 g, 9.78 mmol)
was used instead of 8-hydroxyquinoline and the reaction was
carried out in the same way.
1 F. H. Westheimer, Science, 1987, 235, 1173.
2 (a) T. C. Bruice and S. J. Benkovic, Bio-Organic Mechanisms,
ed. W. A. Benjamin, New York, USA, 1966; (b) P. Gillespie,
F. Ramirez, I. Ugi and D. Marquarding, Angew. Chem., Int.
Ed. Engl., 1973, 12, 91.
3 (a) J. R. Cox Jr. and O. B. Ramsday, Chem. Rev., 1964, 64, 317;
(b) C. R. Hall and T. D. Inch, Tetrahedron, 1980, 36, 2059.
4 C. C. P. Wagener, A. M. Modro and T. A. Modro, J. Phys.
Org. Chem., 1991, 4, 516.
5 (a) F. H. Westheimer, Acc. Chem. Res., 1968, 1, 70;
(b) K. Taira, T. Fanni and D. G. Gorenstein, J. Org. Chem.,
1984, 49, 453; (c) G. Aksnes and K. Bergesen, Acta Chem.
Scand., 1966, 20, 2508; (d) G. R. Thatcher and
D. R. Cameron, J. Chem. Soc., Perkin Trans. 2, 1996, 767;
(e) N.-Y. Chang and C. Lim, J. Am. Chem. Soc., 1998, 120,
2156; (f) C. S. Lopez, O. N. Faza, A. R. de Lera and
D. M. York, Chem. – Eur. J., 2005, 11, 2081.
Characteristic experimental data of HQP
1
Melting point: 196–198 °C; H NMR (400 MHz, CDCl3): δ 8.80
(d, J = 4.4 Hz, 3H), 8.20 (d, J = 8.0 Hz, 3H), 8.15 (d, J = 8.4 Hz,
3H), 7.68 (d, J = 8.4 Hz, 3H), 7.54 (t, J = 8.0 Hz, 3H), 7.40 (dd,
J = 8.0 Hz, 3H); 13C NMR of R1 (125 MHz, CDCl3): δ 150.1,
147.0, 140.7, 135.6, 129.5, 126.3, 124.8, 121.6, 120.0; TOF-MS
ES+ (m/z, %): 480.87 (M + 1, 30), 479.86 (M+, 100), 334.90 (10);
FT-IR (KBr, cm−1): 3016 (Ar. C–H str.), 2676, 1600 (Ar. CvN
str.), 1488 (Ar. CvC str.), 1301 (Ar. C–O str.), 1251 (PvO str.),
1082, 951 (P–O str.), 841 (Ar. C–H bending).
6 N. Ashkenazi, S. S. Zade, Y. Segall, Y. Kartona and
M. Bendikov, Chem. Commun., 2005, 5879.
7 F. Covitz and F. H. Westheimer, J. Am. Chem. Soc., 1963, 85,
1773.
8 (a) B. S. Souza, T. A. S. Brandao, E. S. Orth, A. C. Roma,
R. L. Longo, C. A. Bunton and F. Nome, J. Org. Chem., 2009,
74, 1042; (b) D. Barford, A. K. Das and M. P. Egloff, Annu.
Characteristic experimental data of NP
1
Melting point: 148–150 °C; H NMR (400 MHz, CDCl3): δ 7.96
(d, J = 8.5 Hz, 3H), 7.84 (d, J = 8.5 Hz, 3H), 7.71 (d, J = 8.5 Hz,
3H), 7.61 (d, J = 7.5 Hz, 3H), 7.48 (t, J = 8.5 Hz, 3H), 7.41–7.37
(m, 6H); 13C NMR (100 MHz, CDCl3): δ 146.5, 134.7, 127.7,
126.7, 126.5, 126.2, 125.6, 125.4, 121.4, 115.3; TOF-MS ES+ (m/
z, %): 499.90 (M + 23, 30), 498.88 (M-1 + 23, 90), 476.92 (M+,
100); FT-IR (KBr, cm−1): 3058 (Ar. C–H str.), 1598 (Ar. CvC
str.), 1389, 1299 (Ar. C–O str.), 1222, 1156 (PvO str.), 1077,
1042, 951 (P–O str.), 845 (Ar. C–H bending).
Rev.
Biophys.
Biomol.
Struct.,
1998,
27,
133;
(c) M. D. Jackson and J. M. Denu, Chem. Rev., 2001, 101,
2313.
9 (a) H. Sigel, Inorg. Chim. Acta, 1992, 1, 198; (b) P. Hendry
and A. M. Sargeson, in Progress in Inorganic Chemistry: Bioi-
norganic Chemistry, ed. S. J. Lippard, Wiley, New York,
1990, vol. 38, p. 201.
X-ray crystallography
10 M.-Y. Chae and A. W. Czarnik, J. Am. Chem. Soc., 1992, 114,
9704.
The data of the HQP, NP and Pb4(HQ)6(ClO4)2 compounds
were collected on a Bruker AXS SMART APEX II diffractometer 11 (a) D. T. Quang and J. S. Kim, Chem. Rev., 2010, 110, 6280;
equipped with an area detector system, using Mo Kα radiation
with graphite monochromatization (λ = 0.71073 Å) at T = 293
(b) M. H. Lee, S. W. Lee, S. H. Kim, C. Kang and J. S. Kim,
Org. Lett., 2009, 11, 2101.
(2) K. The structures were solved by direct methods using 12 (a) National Primary Drinking Water Regulations, Code of
SHELXS-97 (Sheldrick, 1990) and refined by the full-matrix
least-squares method; using SHELXL-2013 (Sheldrick, 2013).
Crystallographic data (excluding structure factors) for the
Federal Regulations, 40CFR, 2002, ch. 1, vol. 19, p. 141;
(b) Guidelines for Drinking-Water Quality, World Health
Organization, Geneva, 2nd edn, 1996, vol. 2, p. 940.
This journal is © The Royal Society of Chemistry 2016
Dalton Trans.