Chemistry - A European Journal
10.1002/chem.201605663
COMMUNICATION
[
3] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger,
the ability to bind to the cap binding protein eIF4E, whereas 10c
was not bound. We also produced 24 nt long model mRNAs with
the differently modified caps and performed photo-crosslinking
studies to eIF4E. Herein, crosslinking of 10a-b-RNAs with eIF4E
was observed, whereas 10c-RNA showed no crosslinking, in
line with the binding constants. Since the wavelength required
for photo-crosslinking is longer and thus less damaging for the
diazirine compared to the aryl azide, the AdoMet analogue 1b is
currently the best choice for enzymatic transfer and photo-
crosslinking to a directly interacting protein.
Of course, the direct modification of a protein binding site (i.e.
the N7 position of the cap for eIF4E used in this study) is not an
ideal system for photo-crosslinking studies but should rather be
regarded as a proof of concept. We anticipate that our photo-
crosslinking approach will be particularly useful if sites adjacent
to the protein binding-site of interest can be enzymatically
modified. This can be achieved by smart choices of MTase and
target site or by developing new AdoMet analogues causing less
steric hindrance.
A. Rothballer, M. Ascano, Jr., A. C. Jungkamp, M. Munschauer, A. Ulrich, G. S.
Wardle, S. Dewell, M. Zavolan and T. Tuschl, Cell 2010, 141, 129-141.
[4] K. Kramer, T. Sachsenberg, B. M. Beckmann, S. Qamar, K. L. Boon, M. W.
Hentze, O. Kohlbacher and H. Urlaub, Nat. Methods 2014, 11, 1064-1070.
[
5] G. W. Preston and A. J. Wilson, Chem. Soc. Rev. 2013, 42, 3289-3301.
[6] a) M. Op de Beeck and A. Madder, J. Am. Chem. Soc. 2012, 134, 10737-
0740; b) L. L. Carrette, E. Gyssels, J. Loncke and A. Madder, Org. Biomol.
Chem. 2014, 12, 931-935.
7] L. L. Carrette, E. Gyssels, N. De Laet and A. Madder, Chem. Commun.
2016, 52, 1539-1554.
8] Z. Qiu, L. Lu, X. Jian and C. He, J. Am. Chem. Soc. 2008, 130, 14398-
4399.
[9] U. K. Shigdel, J. Zhang and C. He, Angew. Chem. Int. Ed. 2008, 47, 90-93.
10] J. J. Tate, J. Persinger and B. Bartholomew, Nucleic Acids Res. 1998, 26,
421-1426.
11] K. Nakamoto and Y. Ueno, J. Org. Chem. 2014, 79, 2463-2472.
1
[
[
1
[
1
[
[12] K. L. Buchmueller, B. T. Hill, M. S. Platz and K. M. Weeks, J. Am. Chem.
Soc. 2003, 125, 10850-10861.
[
[14] M. Nowakowska, J. Kowalska, F. Martin, A. d'Orchymont, J. Zuberek, M.
Lukaszewicz, E. Darzynkiewicz and J. Jemielity, Org. Biomol. Chem. 2014, 12,
13] R. Wombacher and A. Jäschke, J. Am. Chem. Soc. 2008, 130, 8594-8595.
4
[
841-4847.
15] M. Kimoto, M. Endo, T. Mitsui, T. Okuni, I. Hirao and S. Yokoyama, Chem.
Biol. 2004, 11, 47-55.
[
[
16] X. Cheng and R. J. Roberts, Nucleic Acids Res. 2001, 29, 3784-3795.
17] a) C. Dalhoff, G. Lukinavicius, S. Klimasauskas and E. Weinhold, Nat.
Chem. Biol. 2006, 2, 31-32; b) G. Lukinavicius, V. Lapiene, Z. Stasevskij, C.
Dalhoff, E. Weinhold and S. Klimasauskas, J. Am. Chem. Soc. 2007, 129,
2
758-2759; c) S. Willnow, M. Martin, B. Lüscher and E. Weinhold,
Experimental Section
Chembiochem 2012, 13, 1167-1173; d) K. Islam, I. Bothwell, Y. Chen, C.
Sengelaub, R. Wang, H. Deng and M. Luo, J. Am. Chem. Soc. 2012, 134,
5
909-5915; e) J. M. Holstein, D. Stummer and A. Rentmeister, Chem. Sci.
Experimental details can be found in the supplementary information.
2015, 6, 1362-1369.
[
2
18] a) D. Schulz, J. M. Holstein and A. Rentmeister, Angew. Chem. Int. Ed.
013, 52, 7874-7878; b) W. Peters, S. Willnow, M. Duisken, H. Kleine, T.
Macherey, K. E. Duncan, D. W. Litchfield, B. Lüscher and E. Weinhold, Angew.
Chem. Int. Ed. 2010, 49, 5170-5173; c) B. J. C. Law, A.-W. Struck, M. R.
Bennett, B. Wilkinson and J. Micklefield, Chem. Sci. 2015, 6, 2885-2892.
Acknowledgements
[
19] J. M. Holstein, L. Anhäuser and A. Rentmeister, Angew. Chem. Int. Ed.
2016, 55, 10899-10903.
20] R. Wang, K. Islam, Y. Liu, W. Zheng, H. Tang, N. Lailler, G. Blum, H.
A.R. thanks the DFG for support by an Emmy Noether fellowship
[
(
(
RE2796/2-1) and the Fonds der Chemischen Industrie
Dozentenpreis). F.M. is supported by the DFG Priority
Deng and M. Luo, J. Am. Chem. Soc. 2013, 135, 1048-1056.
[21] a) C. Dalhoff, M. Huben, T. Lenz, P. Poot, E. Nordhoff, H. Koster and E.
Weinhold, Chembiochem 2010, 11, 256-265; b) B. D. Horning, R. M. Suciu, D.
A. Ghadiri, O. A. Ulanovskaya, M. L. Matthews, K. M. Lum, K. M. Backus, S. J.
Brown, H. Rosen and B. F. Cravatt, J. Am. Chem. Soc. 2016, 138, 13335-
13343.
Programme SPP1784 (RE2796/3-1). This work was supported
by the SFB858. We thank Ann-Marie Lawrence-Dörner for
excellent technical support, Dr. Wolfgang Dörner for help with
LC-MS analysis and Henning Klaasen for assistance with
synthesis. The NMR (Dr. Klaus Bergander) and mass
spectrometry facilities (Dr. Matthias Letzel) at the Organisch-
Chemisches Institut, Münster are acknowledged for analytical
services.
[
22] G. Lukinavicius, M. Tomkuviene, V. Masevicius and S. Klimasauskas,
ACS Chem. Biol. 2013, 8, 1134-1139.
[23] S. Hausmann, S. Zheng, C. Fabrega, S. W. Schneller, C. D. Lima and S.
Shuman, J. Biol. Chem. 2005, 280, 20404-20412.
[
24] a) A. Plotnikova, A. Osipenko, V. Masevicius, G. Vilkaitis and S.
Klimasauskas, J. Am. Chem. Soc. 2014, 136, 13550-13553; b) S. Singh, J.
Zhang, T. D. Huber, M. Sunkara, K. Hurley, R. D. Goff, G. Wang, W. Zhang, C.
Liu, J. Rohr, S. G. Van Lanen, A. J. Morris and J. S. Thorson, Angew. Chem.
Int. Ed. 2014, 53, 3965-3969; c) K. Islam, Y. Chen, H. Wu, I. R. Bothwell, G. J.
Blum, H. Zeng, A. Dong, W. Zheng, J. Min, H. Deng and M. Luo, Proc. Natl.
Acad. Sci. U S A 2013, 110, 16778-16783; d) K. Islam, W. Zheng, H. Yu, H.
Deng and M. Luo, ACS Chem. Biol. 2011, 6, 679-684.
Keywords: AdoMet analogue • RNA labelling • photo-
crosslinking • RNA-protein interactions
[
25] a) M. Jerabek-Willemsen, C. J. Wienken, D. Braun, P. Baaske and S.
Duhr, Assay Drug Dev. Technol. 2011, 9, 342-353; b) C. J. Wienken, P.
Baaske, U. Rothbauer, D. Braun and S. Duhr, Nat. Commun. 2010, 1, 100.
[
1] a) H. Baruah, S. Puthenveetil, Y. A. Choi, S. Shah and A. Y. Ting, Angew.
Chem. Int. Ed. 2008, 47, 7018-7021; b) N. Hino, Y. Okazaki, T. Kobayashi, A.
Hayashi, K. Sakamoto and S. Yokoyama, Nat. Methods 2005, 2, 201-206; c) J.
W. Chin, A. B. Martin, D. S. King, L. Wang and P. G. Schultz, Proc. Natl. Acad.
Sci. U S A 2002, 99, 11020-11024; d) H. W. Ai, W. Shen, A. Sagi, P. R. Chen
and P. G. Schultz, Chembiochem 2011, 12, 1854-1857; e) M. J. Schmidt and
D. Summerer, Angew. Chem. Int. Ed. 2013, 52, 4690-4693.
[
26] T. H. Scheuermann, S. B. Padrick, K. H. Gardner and C. A. Brautigam,
Anal. Biochem. 2016, 496, 79-93.
27] A. Niedzwiecka, J. Marcotrigiano, J. Stepinski, M. Jankowska-Anyszka, A.
[
Wyslouch-Cieszynska, M. Dadlez, A. C. Gingras, P. Mak, E. Darzynkiewicz, N.
Sonenberg, S. K. Burley and R. Stolarski, J. Mol. Biol. 2002, 319, 615-635.
[
28] Y. Jia, V. Polunovsky, P. B. Bitterman and C. R. Wagner, Med. Res. Rev.
[
2] a) M. Ascano, M. Hafner, P. Cekan, S. Gerstberger and T. Tuschl, Wiley
2012, 32, 786-814.
Interdiscip. Rev. RNA 2012, 3, 159-177; b) R. P. Sinha and D. P. Hader,
Photochem. Photobiol. Sci. 2002, 1, 225-236.
.
This article is protected by copyright. All rights reserved.