D
F. M. Moghaddam et al.
Letter
Synlett
starting materials, the short reaction times, the moderate
to high yields, and the easy purification and high diversity
of the products are among the advantages of this method.
(17) Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L.
J. Mater. Chem. 2001, 11, 2238.
(18) Mizuno, T.; Wei, W.-H.; Eller, L. R.; Sessler, J. L. J. Am. Chem. Soc.
2002, 124, 1134.
(19) Crossley, J. C.; Johnston, L. A. Chem. Commun. 2002, 1122.
(20) (a) Gazit, A.; App, H.; McMahon, G.; Chen, J.; Levitzki, A.;
Bohmer, F. D. J. Med. Chem. 1996, 39, 2170. (b) Sehlstedt, U.;
Aich, P.; Bergman, J.; Vallberg, H.; Nordén, B.; Gräslund, A. J. Mol.
Biol. 1998, 278, 31. (c) Ling, R.; Yoshida, M.; Mariano, P. S. J. Org.
Chem. 1996, 61, 4439.
Supporting Information
Supporting information for this article is available online at
details, characteristic data, 1H and 13CNMR spectra of products, crys-
(21) (a) Eryazici, I.; Moorefield, C. N.; Durmus, S.; Newkome, G. R.
J. Org. Chem. 2006, 71, 1009. (b) Tu, S. J.; Jia, R. H.; Jiang, B.;
Zhang, J. Y.; Zhang, Y.; Yao, C. S.; Ji, S. J. Tetrahedron 2007, 63,
381.
(22) Sandeep, C.; Padmashali, B.; Kulkarni, R. S. Tetrahedron Lett.
2013, 54, 6411.
tal data and the computational data of products.
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) (a) Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.;
Ishibashi, F.; Bailly, C.; Gago, F. J. Med. Chem. 2005, 48, 3796.
(b) Xiang, L.; Xing, D.; Wang, W.; Wang, R.; Ding, Y.; Du, L. Phy-
tochemistry 2005, 66, 2595. (c) Wang, R. F.; Yang, X. W.; Ma, C.
M.; Cai, S. Q.; Li, J. N.; Yukihiro, S. Heterocycles 2004, 63, 1443.
(d) Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58,
6795. (e) Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S.
T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J.
J. Med. Chem. 1999, 42, 1901. (f) Andersen, R. J.; Faulkner, D. J.;
Heng, H. C.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1985,
107, 5492.
(23) Prasanna, P.; Kumar, S. V.; Gunasekaran, P.; Perumal, S. Tetrahe-
dron Lett. 2013, 54, 3740.
(24) Wu, L.; Sun, J.; Yan, C.-G. Org. Biomol. Chem. 2012, 10, 9452.
(25) García Ruano, J. L.; Fraile, A.; Martín, M. R.; González, G.;
Fajardo, C.; Martín-Castro, A. M. J. Org. Chem. 2011, 76, 3296.
(26) Moghaddam, F. M.; Khodabakhshi, M. R.; Ghahremannejad, Z.;
Foroushani, B. K.; Ng, S. W. Tetrahedron Lett. 2013, 54, 2520.
(27) Matloubi Moghaddam, F.; Kiamehr, M.; Khodabakhshi, M. R.;
Jebeli Javan, M.; Fathi, S.; Villinger, A.; Iaroshenko, V. O.; Langer,
P. Helv. Chim. Acta 2013, 96, 2103.
(2) (a) Tangdenpaisal, K.; Worayuthakarn, R.; Karnkla, S.;
Ploypradith, P.; Intachote, P.; Sengsai, S.; Saimanee, B.;
Ruchirawat, S.; Chittchang, M. Chem. Asian J. 2015, 10, 925.
(b) Theppawong, A.; Ploypradith, P.; Chuawong, P.; Ruchirawat,
S.; Chittchang, M. Chem. Asian J. 2015, 10, 2631. (c) Plisson, F.;
Huang, X. C.; Zhang, H.; Khalil, Z.; Capon, R. J. Chem. Asian J.
2012, 7, 1616.
(28) Matloubi Mogaddam, F.; Eslami, M.; Siahpoosh, A.; Golfam, H.
New J. Chem. 2019, 43, 10318.
(29) Alizadeh, A.; Moafi, L. Heterocycl. Commun. 2017, 23, 375.
(30) Alizadeh, A.; Mohammadi, R.; Bayat, F.; Zhu, L. G. Tetrahedron
2017, 73, 4433.
(31) 1-Aryl-2-(11H-indeno[1,2-b]quinoxalin-11-ylidene)etha-
nones 3; General Procedure
(3) Su, B.; Cai, C.; Deng, M.; Liang, D.; Wang, L.; Wang, Q. Bioorg.
Med. Chem. Lett. 2014, 24, 2881.
(4) Cavallito, C. J.; Gray, A. P. FR 2135297, 1972; Chem. Abstr. 1973,
79, 96989
(5) Maryanoff, B. E.; Vaught, J. L.; Shank, R. P.; McComsey, D. F.;
Costanzo, M. J.; Nortey, S. O. J. Med. Chem. 1990, 33, 2793.
(6) Maryanoff, B. E.; McComsey, D. F.; Gardocki, J. F.; Shank, R. P.;
Constanzo, M. J.; Nortey, S. O.; Schneider, C. R.; Setler, P. E.
J. Med. Chem. 1987, 30, 1433.
(7) Kurasawa, Y.; Kim, H. O. J. Heterocycl. Chem. 2002, 39, 551.
(8) Monge, A.; Palop, J. A.; Urbasos, I.; Fernández-Alvarez, E. J. Het-
erocycl. Chem. 1989, 26, 1623.
NaOAc (1.5 mmol) was added to a solution of ninhydrin (1
mmol) and the appropriate phenylenediamine 1 (1 mmol) in
EtOH (4 mL), and the solution was stirred for 1 h at r.t. Then, the
appropriate 1-aryl-2-(triphenylphosphoranylidene)ethanone 4
(1.5 mmol) was added and the mixture was stirred at the reflux
until the reaction was complete (TLC; 2 h). The mixture was
then filtered and the product was recrystallized from EtOH.
(32) Products 6a–o: General Procedure
A mixture of isoquinoline (1 mmol) and the appropriate
phenacyl bromide 5 (1 mmol) in CH3CN (3 mL) was stirred at r.t.
for 15 min. Et3N (1 mmol) and the appropriate ketone 3 (1
mmol) were added, and the mixture was stirred under reflux
until the reaction was complete (TLC; hexane–EtOAc, 1:2). The
pure products was then simply collected by filtration and dried
in air.
(9) Vicente, E.; Pérez-Silanes, S.; Lima, L. M.; Ancizu, S.; Burguete,
A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Bioorg. Med. Chem.
2009, 17, 385.
(10) Becker, I. J. Heterocycl. Chem. 2008, 45, 1005.
(11) Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S.
B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. Bioorg.
Med. Chem. 2008, 16, 9133.
(12) Abouzid, K. A. M.; Khalil, N. A.; Ahmed, E. M.; Abd El-Latif, H. A.;
El-Araby, M. E. Med. Chem. Res. 2010, 19, 629.
(13) Wagle, S.; Adhikari, A. V.; Kumari, N. S. Eur. J. Med. Chem. 2009,
44, 1135.
(14) Kleim, J. P.; Bender, R.; Billhardt, U. M.; Meichsner, C.; Riess, G.;
Rösner, M.; Winkler, I.; Paessens, A. Antimicrob. Agents Chemo-
ther. 1993, 37, 1659.
(2′-Benzoyl-2′,3′-dihydro-10b′H-spiro[indeno[1,2-b]quinox-
aline-11,1′-pyrrolo[2,1-a]isoquinolin]-3′-yl)(4-tolyl)metha-
none (6b)
Orange solid; yield: 411 mg (69%); mp 207–209 °C. IR (KBr) =
1679, 1615, 14.99, 1460, 1328, 1238, 1130 cm–1
.
1H NMR (500
3
MHz, CDCl3): H = 2.41 (s, 3 H, CH3), 5.23 (d, JHH = 7.5 Hz, 1 H,
CH pyrrolidine), 5.31 (d, 3JHH = 5.4 Hz, 1 H, olefinic CH), 5.36 (d,
3JHH = 7.7 Hz, 1 H, N–CH pyrrolidine), 6.25–6.28 (t, 3JHH = 7.5 Hz,
1 H, H–Ar), 6.38 (s, 1 H, benzylic CH), 6.43 (d, 3JHH = 5.4 Hz, 1 H,
3
olefinic CH–N), 6.53 (d, JHH = 7.5 Hz, 1 H, H–Ar), 6.56–6.60 (t,
3JHH = 7.5 Hz, 2 H, H–Ar), 6.65 (d, 3JHH = 7.5 Hz, 1 H, H–Ar), 6.70–
6.75 (m, 3 H, H–Ar), 6.99–7.02 (t, 3JHH = 7.5 Hz, 1 H, H–Ar), 7.20–
(15) Kulkarni, N. V.; Revankar, V. K.; Kirasur, B. N.; Hugar, M. H. Med.
Chem. Res. 2012, 21, 663.
(16) Amin, K. M.; Ismail, M. M. F.; Noaman, E.; Soliman, D. H.;
Ammar, Y. A. Bioorg. Med. Chem. 2006, 14, 6917.
3
3
7.23 (t, JHH = 7.5 Hz, 1 H, H–Ar), 7.32 (d, JHH = 7.5 Hz, 3 H, H–
Ar), 7.62 (d, 3JHH = 7.5 Hz, 1 H, H–Ar), 7.78–7.81 (m, 3 H, H–Ar),
3
3
8.07 (d, JHH = 9.5 Hz, 1 H, H–Ar), 8.10 (d, JHH = 8.0 Hz, 2 H, H–
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–E