2376
An Electrostatically-Anchored Rhodium(I) Catalyst for the Hydroformylation
J. Braz. Chem. Soc.
only for 10% of the mass balance at the end of the 24-hour
reaction.A possible explanation for this observation is that,
differently from the chloride-free homogeneous system,
in the anchored system HCl can be released during the
formation of catalytically active species from the rhodium
precursor and this acid will favor the acetalization step.
After run 10 the catalyst was recovered and used
two more times (Table 2, runs 12 and 13). In both
recycles, eugenol was completely transformed into the
hydroformylation products in 24 h (ca. 90% acetals) at
nearly the same rate and with similar selectivity as in the
original reaction.
The catalyst is also useful to other naturally occurring
allyl benzene, i.e., estragole 1b (Table 2, run 14). The
reaction was also nearly completed in 24 h giving
hydrofomylation products in 99% selectivity, albeit with
slightly lower relative amounts of the corresponding acetals
(71%).
Isoeugenol (2a) was also tested under the
hydroformylation conditions in methanol solutions
(Table 2, run 15). The rate of the conversion of this internal
olefin was very low: only 9% of the substrate was converted
in 24 h. Moreover, most of the converted substrate was
transformed into the terminal isomer, eugenol 1a. The
latter yielded aldehydes 4a and 5a and corresponding
acetals 4’a and 5’a. Aldehyde 6a (Scheme 1), one of
the expected product of the direct hydroformylation of
2a, was not observed at all. This result shows that the
catalyst can be used for the selective hydroformylation of
allyl benzenes, even in the presence of a large quantity of
propenyl benzenes.
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), INCT-Catálise are acknowledged.
References
1. Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W.;
J. Mol. Catal. 1995, 104, 17.
2. Gusevskaya, E.V.; Jimènez-Pinto, J.; Börner,A.; ChemCatChem
2014, 6, 382.
3. Foca, C. M.; dos Santos, E. N.; Gusevskaya, E. V.; J. Mol.
Catal. A 2002, 185, 17.
4. Dias, A. O.; Augusti, R.; dos Santos, E. N.; Gusevskaya, E. V.;
Tetrahedron Lett. 1997, 38, 41.
5. Barros, H. J. V.; Guimaraes, C. C.; dos Santos, E. N.;
Gusevskaya, E. V.; Catal. Commun. 2007, 8, 747.
6. da Silva, J. G.; Barros, H. J. V.; Balanta, A.; Bolanos, A.;
Novoa, M. L.; Reyes, M.; Contreras, R.; Bayon, J. C.;
Gusevskaya, E. V.; dos Santos, E. N.; Appl. Catal. A 2007, 326,
219.
7. Barros, H. J. V.; da Silva, J. G.; Guimaraes, C. C.; dos Santos,
E. N.; Gusevskaya, E. V.; Organometallics 2008, 27, 4523.
8. Vieira, C. G.; da Silva, J. G.; Penna, C.A.A.; dos Santos, E. N.;
Gusevskaya, E. V.; Appl. Catal. A 2010, 380, 125.
9. Vieira, C. G.; de Freitas, M. C.; dos Santos, E. N.; Gusevskaya,
E. V.; ChemCatChem 2012, 4, 795.
10. de Freitas, M. C.;Vieira, C. G.; dos Santos, E. N.; Gusevskaya,
E. V.; ChemCatChem 2013, 5, 1884.
11. da Silva, A. C.; de Oliveira, K. C. B.; Gusevskaya, E. V.; dos
Santos, E. N.; J. Mol. Catal. A 2002, 179, 133.
12. Paganelli, S.; Spano, L.; Marchetti, M.; Piccolo, O.; Chim. Ind.
2005, 87, 94.
13. Axet, M. R.; Castillon, S.; Claver, C.; Inorg. Chim. Acta 2006,
359, 2973.
Conclusions
14. Obrecht, L.; Kamer, P. C. J.; Laan, W.; Catal. Sci. Technol.
2013, 3, 541.
A solid catalyst for the hydroformylation of allyl
benzenes was prepared in a simple manner by anchoring
rhodium(I) complexes to a cheap, commercially available
anion-exchange resin through a readily prepared anionic
phosphine, i.e., TPPMS. The catalyst can be easily
recovered from the reaction mixture and re-used without
a significant loss of the activity. The catalyst is also useful
for the tandem sequence hydroformylation/acetalization
of allyl benzenes in methanol or ethanol solutions, in
which the primarily formed aldehydes could be essentially
converted to the corresponding acetals in the absence of
auxiliary acid co-catalysts.
15. Leadbeater, N. E.; Marco, M.; Chem. Rev. 2002, 102, 3217.
16. Barbaro, P.; Liguori, F.; Chem. Rev. 2009, 109, 515.
17. Ford, M. E.; Premecz, J. E.; J. Mol. Catal. 1983, 19, 99.
18. Joo, F.; Beck, M. T.; J. Mol. Catal. 1984, 24, 135.
19. Toth, I.; Hanson, B. E.; Guo, I.; Davis, M. E.; Catal. Lett. 1991,
8, 209.
20. Bryant, D. E.; Kilner, A.; J. Mol. Catal. A 2003, 193, 83.
21. Diwakar, M. M.; Deshpande, R. M.; Chaudhari, R. V.; J. Mol.
Catal. A 2005, 232, 179.
22. Shaughnessy, K. H.; Chem. Rev. 2009, 109, 643.
23. Horváth, H. H.; Papp, G.; Csajági, C.; Joó, F.; Catal. Commun.
2007, 8, 442.
Acknowledgements
24. Nunes, R. M. D.; Fernandes, T. F.; Carvalho, G.A.; dos Santos,
E. N.; Moreno, M.; Piedade, A. P.; Pereira, M. M.; J. Mol.
Catal. A 2009, 307, 115.
Financial support from Fundação deAmparo à Pesquisa
do Estado de Minas Gerais (FAPEMIG), Conselho
25. Uson, R.; Oro, L.A.; Cabeza, J.A.; Inorg. Synth. 1985, 23, 126.