Communications
nanoparticles to the water/oil interface and to self-assemble
into closely packed arrays. Meanwhile, the possibility to form
nanoalloy films at interfaces has also been demonstrated. The
Fitzmaurice, J. A. Preece, J. Phys. Condens. Matter 2003, 15,
S3047-S3063; d) R. Shenhar, V. M. Rotello, Acc. Chem. Res.
2003, 36, 549 – 561.
[
4] a) C. J. Kiely, J. Fink, J. G. Zheng, M. Brust, D. Bethell, D. J.
Schiffrin, Adv. Mater. 2000, 12, 640 – 643; b) E. V. Shevchenko,
D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller,
J. Am. Chem. Soc. 2002, 124, 11480 – 11485; c) F. X. Redl, K. S.
Cho, C. B. Murray, S. OꢀBrien, Nature 2003, 423, 968 – 971.
2
-bromopropionate group rather than the length of the
hydrocarbon chains of the ligands mainly determine the
surface wettability of modified nanoparticles. Thus, our work
is an important step towards interfacial entrapment and
assembly of nanoparticles for the creation of 2D or 3D
nanostructures for electronic, optoelectrical, and magnetic
applications. In our laboratory, we are currently capping
nanoparticles with ligands containing various carboxylic ester
terminal groups to generalize our concept and to establish a
relationship between the contact angle of the nanoparticles at
the water/oil interface and the terminal group on the ligand
terminal. This should provide a means to manipulate nano-
particle solubility in the bulk phase and hence the elasticity of
the interface.
[5] a) J. H. Fendler, Curr. Opin. Colloid Interface Sci. 1996, 1, 202 –
207; b) B. Kim, S. L. Tripp, A. Wei, J. Am. Chem. Soc. 2001, 123,
7955 – 7956.
[
6] a) D. Yogev, S. Efrima, J. Phys. Chem. 1988, 92, 5754 – 5760;
b) C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, V. V. Agrawal, P.
Saravanan, J. Phys. Chem. B 2003, 107, 7391– 7395.
[7] a) Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell,
Science 2003, 299, 226 – 229; b) F. Reincke, S. G. Hickey, W. K.
Kegel, D. Vanmaekelbergh, Angew. Chem. 2004, 116, 464 – 468;
Angew. Chem. Int. Ed. 2004, 43, 458 – 462.
8] For recent reviews, see: a) B. P. Binks, Curr. Opin. Colloid
Interface Sci. 2002, 7, 21– 41; b) R. Aveyard, B. P. Binks, J. H.
Clint, Adv. Colloid Interface Sci. 2003, 100–102, 503 – 546.
9] a) S. Chen, H. Yao, K. Kimura, Langmuir 2001, 17, 733 – 739;
b) K. S. Mayya, M. Sastry, Langmuir 1999, 15, 1902 – 1904.
[
[
Experimental Section
DTBE and DTBU were prepared by acrylation of bis(2-hydroethyl)
disulfide and bis(2-hydroethyl) disulfide, obtained by employing the
[10] Contact angle, wettability and adhesion (Ed.: K. L. Mittal), VSP
BV, Utrecht, 1993.
[
16]
method described by Hawker and co-workers. Briefly, 2-bromo-2-
methylpropionyl bromide (14.8 mmol) was added dropwise to a
mixture of the disulfide (6.17 mmol) and triethylamine (31.5 mmol) in
dichloromethane (150 mL) at 08C under an argon atmosphere. The
solution was stirred at 08C for 1h and then for another 2 h at room
temperature. After the precipitates were filtered off, the organic
phase was extracted with 2n Na CO solution saturated with NH Cl
[11] a) S. Nuß, H. Bꢁttcher, H. Wurm, M. L. Hallensleben, Angew.
Chem. 2001, 113, 4137 – 4139; Angew. Chem. Int. Ed. 2001, 40,
4016 – 4018; b) K. Ohno, K. Koh, Y. Tsujii, T. Fukuda, Angew.
Chem. 2003, 115, 2857 – 2860; Angew. Chem. Int. Ed. 2003, 42,
2751– 2754; c) Y. Wang, X. Teng, J. Wang, H. Yang, Nano Lett.
2003, 3, 789 – 793; d) T. K. Mandal, M. S. Fleming, D. R. Walt,
Nano Lett. 2002, 2, 3 – 7.
2
3
4
to remove the excess bromides. Subsequent removal of dichloro-
methane yielded DTBE and DTBU.
[12] Colloidal Gold: Principles, Methods, and Applications (Ed.:
M. A. Hayat), Academic Press, San Diego, CA, 1991.
[13] P. Mulvaney, Langmuir 1996, 12, 788 – 800.
[14] W. Wang, S. Efrima, O. Regev, J. Phys. Chem. B 1999, 103, 5613–
5621.
[15] S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204 – 8205.
[16] R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott,
C. J. Hawker, J. L. Hedrick, Macromolecules 2000, 33, 597 – 605.
DTBE (4.6 mg) or DTBU (7.2 mg) was dissolved in THF (10 mL)
and the solution then added dropwise to an aqueous solution of Au or
Ag-NPs (40 mL). After incubating the mixtures for 6–12 h, followed
by removal of excess initiators by centrifugation, the initiator-capped
nanoparticles were obtained and suspended in water for further use.
A solution of 4-nm g-Fe O nanoparticles in toluene (5 mL) was
2
3
incubated with a solution of BMPA (1.67 mg) in toluene (5 mL) for
two days. The subsequent removal of excess BMPA yielded g-Fe O @
2
3
BMPA nanoparticles and they were suspended in toluene for further
use.
UV/Vis absorption spectra were recorded by using a Cary 50 UV-
visible spectrophotometer. TEM images were obtained by using a
Zeiss EM 912 Omega microscope at an acceleration voltage of
1
20 kV. Contact angle measurements were implemented with a
contact angle measuring system G10 apparatus (Krüss, Germany) at
ambient temperature.
Received: June 9, 2004
Keywords: colloids · interfaces · nanoparticles · self-assembly ·
.
surface wettability
[
[
[
1] a) H. Weller, Angew. Chem. 1993, 105, 43 – 55; Angew. Chem.
Int. Ed. Engl. 1993, 32, 41– 53; ; b) A. P. Alivisatos, Science 1996,
271, 933 – 937.
2] a) C. P. Collier, T. Vossmeyer, J. R. Heath, Annu. Rev. Phys.
Chem. 1998, 49, 371– 404; b) C. B. Murray, C. R. Kagan, M. G.
Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545 – 610.
3] a) M. D. Musick, C. D. Keating, M. H. Keefe, M. J. Natan, Chem.
Mater. 1997, 9, 1499 – 1501; b) C. M. Niemeyer, Angew. Chem.
2001, 113, 4254 – 4287; Angew. Chem. Int. Ed. 2001, 40, 4128 –
4158; c) P. M. Mendes, Y. Chen, R. E. Palmer, K. Nikitin, D.
5
642
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 5639 –5642