Communication
ChemComm
6 R. Trotzki, M. M. Hoffmann and B. Ondruschka, Green Chem., 2008,
10, 767–772.
7 L. Rong, X. Li, H. Wang, D. Shi, S. Tu and Q. Zhuang, Synth.
Commun., 2006, 36, 2407–2412.
8 S. Mashkouri and M. R. Naimi-Jamal, Molecules, 2009, 14, 474–479.
9 S. Haferkamp, F. Fischer, W. Kraus and F. Emmerling, Beilstein
J. Org. Chem., 2017, 13, 2010–2014.
10 S. Haferkamp, W. Kraus and F. Emmerling, J. Mater. Sci., 2018, 53,
13713–13718.
11 A. Stolle, R. Schmidt and K. Jacob, Faraday Discuss., 2014, 170, 267–286.
12 C. F. Burmeister, A. Stolle, R. Schmidt, K. Jacob, S. Breitung-Faes
and A. Kwade, Chem. Eng. Technol., 2014, 37, 857–864.
13 D. E. Crawford, C. K. G. Miskimmin, A. B. Albadarin, G. Walker and
S. L. James, Green Chem., 2017, 19, 1507–1518.
Finally, we note a striking difference in the observed reactivity
of barb and van in our hands and in a recent report by James and
coworkers.14 Namely, our reactions did not change the physical
form of the reaction mixture and sticking of the reaction mixture
to the milling media. A possible cause for this difference stems
from the use of two small milling balls in our case, as compared to
the use of one large (13.6 g) ball by James. Two balls, with their
mutual collisions, could possibly clean one another, but more
importantly, one large milling ball significantly heated the reaction
mixture,14 while two small milling balls cause a minor increase in
temperature.42,43 We believe strong heating in combination with a
low melting point of vanillin (ca. 82 1C) could have caused eutectic
melting of the reaction mixture, which could have readily changed
the physical form of the reaction mixture. In addition, lower
temperature in our milling setup also explains slower reactions,
since even a small or moderate increase in temperature can
dramatically influence mechanochemical reaction rates.42,44
In summary, we report, as far as we are aware, the first
cocrystal as an intermediate in a mechanochemical organic
reaction. Remarkably, the cocrystal suitably positioned the reacting
centers for the subsequent carbon–carbon bond formation.
Coupled with crystal engineering, this observation reveals possibi-
lities for controlled use of cocrystals for targeted reactivity in
milling reactions. Moreover, with the choice of liquid additives,
we were able to affect cocrystal formation and its stability under
milling. We also highlight the value of in situ reaction monitoring
which enabled identification and isolation of this unique and
easily overlooked intermediate. Currently, we are undertaking a
detailed in situ kinetic study of this model organic reaction with
the intention to elucidate the influence of liquid additives.
14 B. P. Hutchings, D. E. Crawford, L. Gao, P. Hu and S. L. James,
Angew. Chem., Int. Ed., 2017, 56, 15252–15256.
ˇ
ˇˇ ´
´
15 D. Gracin, V. Strukil, T. Friscic, I. Halasz and K. Uˇzarevic, Angew.
Chem., Int. Ed., 2014, 53, 6193–6197.
ˇ ´
ˇ
16 M. Tireli, M. Juribasic Kulcsar, N. Cindro, D. Gracin, N. Biliskov,
´
´
´
M. Borovina, M. Curic, I. Halasz and K. Uˇzarevic, Chem. Commun.,
2015, 51, 8058–8061.
17 M. Etter, G. Frankenbach and J. Bernstein, Tetrahedron Lett., 1989,
30, 3617–3620.
ˇˇ ´
18 T. Friscic and W. Jones, Cryst. Growth Des., 2009, 9, 1621–1637.
19 J. W. Lauher, F. W. Fowler and N. S. Goroff, Acc. Chem. Res., 2008, 41,
1215–1229.
20 L. R. MacGillivray, J. L. Reid and J. A. Ripmeester, J. Am. Chem. Soc.,
2000, 122, 7817–7818.
ˇˇ ´
21 L. R. MacGillivray, G. S. Papaefstathiou, T. Friscic, T. D. Hamilton,
ˇ
D.-K. Bucar, Q. Chu, D. B. Varshney and I. G. Georgiev, Acc. Chem.
Res., 2008, 41, 280–291.
ˇ
22 A. Sokolov, D.-K. Bucar, J. Baltrusaitis, S. Gu and L. MacGillivray,
Angew. Chem., Int. Ed., 2010, 49, 4273–4277.
23 A. V. Trask and W. Jones, in Crystal Engineering of Organic Cocrystals
by the Solid-State Grinding Approach, ed. F. Toda, Springer, Berlin,
Heidelberg, 2005, pp. 41–70.
24 M. L. Cheney, G. J. McManus, J. A. Perman, Z. Wang and M. J.
Zaworotko, Cryst. Growth Des., 2007, 7, 616–617.
25 J. A. Perman, A. J. Cairns, L. Wojtas, M. Eddaoudi and M. J. Zaworotko,
CrystEngComm, 2011, 13, 3130–3133.
26 J. A. Perman, K. Dubois, F. Nouar, S. Zoccali, u. Wojtas, M. Eddaoudi,
R. W. Larsen and M. J. Zaworotko, Cryst. Growth Des., 2009, 9, 5021–5023.
27 J. H. Kim, S. M. Hubig, S. V. Lindeman and J. K. Kochi, J. Am. Chem.
Soc., 2001, 123, 87–95.
28 J. H. Kim, S. V. Lindeman and J. K. Kochi, J. Am. Chem. Soc., 2001,
123, 4951–4959.
29 J. Schmeyers, F. Toda, J. Boy and G. Kaupp, J. Chem. Soc., Perkin
Trans. 2, 1998, 989–994.
30 G. Schmidt, Pure Appl. Chem., 1971, 27, 647–678.
31 I. Halasz, Cryst. Growth Des., 2010, 10, 2817–2823.
32 N. Shan, F. Toda and W. Jones, Chem. Commun., 2002, 2372–2373.
33 A. V. Trask, W. D. S. Motherwell and W. Jones, Chem. Commun.,
2004, 890–891.
ˇ ´
´
ˇ
We are grateful to Mr Vitomir Stanisic, Mr Ivan Kulcsar and
-
´
the team at the fine-mechanics workshop of the Ruder Boskovic
Institute for their continuous support. We thank Tomislav Stolar for
critically reading the manuscript. Croatian Science Foundation
(Grant No. UIP-2014-09-4744) is gratefully acknowledged. IH is
grateful to the Adris Foundation for financial support. SL is sup-
ˇ
ported by the Croatian Science Foundation. PS and JP acknowledge
support by the Slovenian Research Agency, grant number
P1-0242. IL was supported by the European Union through the
European Regional Development Fund – the Competitiveness and
Cohesion Operational Programme (KK.01.1.1.06) and the H2020
CSA Twinning project No. 692194, RBI-T-WINNING.
ˇˇ ´
34 S. Karki, T. Friscic, W. Jones and W. D. S. Motherwell, Mol.
Pharmacol., 2007, 4, 347–354.
35 S. Lukin, T. Stolar, M. Tireli, M. V. Blanco, D. Babic, T. Friscic,
´
ˇˇ ´
´
K. Uˇzarevic and I. Halasz, Chem. – Eur. J., 2017, 23, 13941–13949.
36 A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter and
J. K. M. Sanders, Chem. Sci., 2016, 7, 6617–6627.
37 I. Halasz, S. A. J. Kimber, P. J. Beldon, A. M. Belenguer, F. Adams,
Conflicts of interest
¨
ˇˇ ´
V. Honkimaki, R. C. Nightingale, R. E. Dinnebier and T. Friscic, Nat.
Protoc., 2013, 8, 1718–1729.
There are no conflicts of interest to declare.
ˇˇ ´
38 T. Friscic, I. Halasz, P. A. Beldon, A. M. Belenguer, F. Adams, S. A. J.
¨
Kimber, V. Honkimaki and R. E. Dinnebier, Nat. Chem., 2013, 5, 66–73.
´
ˇˇ´
39 K. Uˇzarevic,I.HalaszandT.Friscic,J. Phys. Chem. Lett., 2015, 6, 4129–4140.
40 L. Batzdorf, F. Fischer, M. Wilke, K.-J. r. Wenzel and F. Emmerling,
Angew. Chem., Int. Ed., 2015, 54, 1799–1802.
References
1 E. Knoevenagel, Ber. Dtsch. Chem. Ges., 1898, 31, 2596–2619.
2 S. Wada and H. Suzuki, Tetrahedron Lett., 2003, 44, 399–401.
3 G. Kaupp, M. R. Naimi-Jamal and J. Schmeyers, Tetrahedron, 2003,
59, 3753–3760.
41 A. V. Trask, J. van de Streek, W. D. S. Motherwell and W. Jones, Cryst.
Growth Des., 2005, 5, 2233–2241.
ˇ
´
ˇ
´
ˇˇ ´
42 K. Uˇzarevic, V. Strukil, C. Mottillo, P. A. Julien, A. Puskaric, T. Friscic
´
4 R. Schmidt, C. F. Burmeister, M. Balaˇz, A. Kwade and A. Stolle, Org.
and I. Halasz, Cryst. Growth Des., 2016, 16, 2342–2347.
´
ˇˇ ´
Process Res. Dev., 2015, 19, 427–436.
5 D. V. Demchuk, M. N. Elinson and G. I. Nikishin, Mendeleev
Commun., 2011, 21, 224–225.
43 K. Uˇzarevic, N. Ferdelji, T. Mrla, P. Julien, B. Halasz, T. Friscic and
I. Halasz, Chem. Sci., 2018, 9, 2525–2532.
44 J. M. Andersen and J. Mack, Chem. Sci., 2017, 8, 5447–5453.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13216--13219 | 13219