Article
Macromolecules, Vol. 43, No. 13, 2010 5645
different hierarchical self-assembling structures of the copoly-
mers with different volume fractions of PBLG. In summary, the
copolymer with a low volume fraction of PBLG adopted a
poorly ordered packing, in which the detailed packing schemes
of the PMPCS and PBLG rods were unclear, although a
bilayer-type packing was drawn in Figure 8 for the ease of
drawing. With the increase in fPBLG, the morphology trans-
formed first into a stacked bilayer structure in an HL morpho-
logy, and then into a hexagon in cylinder morphology with the
PMPCS domain as cylinders and the PBLG domain as the
matrix at the relatively high content of the PBLG block.
It will be more interesting to know how the self-assembling
structure changes when the two rods in the rod-rod BCPs
have more different diameters. The additional benefit of
using rods with more different diameters is the clear separa-
tion of characteristic reflections from each rod in WAXD
patterns, which facilitates easier structural analysis. On the
other hand, the larger difference in the area of projection
along the long axis of the rods will affect the curvature of the
microphase-separated structure. To this end, further re-
search is currently underway.
(3) Leibler, L.; Orland, H.; Wheeler, J. C. J. Chem. Phys. 1983, 79,
3550–3557.
(
(
(
4) Ciferri, A., Supramolecular Polymers; Marcel Dekker: New York,
000.
5) Bates, F. S.; Schulz, M. F.; Rosedale, J. H.; Almdal, K. Macro-
molecules 1992, 25, 5547–5550.
6) Singh, C.; Goulian, M.; Liu, A. J.; Fredrickson, G. H. Macro-
molecules 1994, 27, 2974–2986.
2
(7) Matsen, M. W. J. Chem. Phys. 1996, 104, 7758–7764.
(8) Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372–375.
(
9) Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217–1229.
(
10) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.;
Keser, M.; Amstutz, A. Science 1997, 276, 384–389.
11) Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem.
Soc. 2008, 130, 7812–7813.
(12) Wang, H.;Wang, H. H.;Urban, V. S.;Littrell, K. C.;Thiyagarajan, P.;
Yu, L. J. Am. Chem. Soc. 2000, 122, 6855–6861.
13) Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. Macromol.
(
(
Rapid Commun. 2009, 30, 1059–1065.
14) Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J. Nature 2000,
(
4
03, 289–292.
(
(
15) Deming, T. J. Macromolecules 1999, 32, 4500–4502.
16) Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.;
Pochan, D.; Deming, T. J. Nature 2002, 417, 424–428.
17) Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming,
T. J. Nat. Mater. 2004, 3, 244–248.
(
(
Conclusions
18) Rodriguez-Hernandez, J.; Lecommandoux, S. J. Am. Chem. Soc.
2005, 127, 2026–2027.
In this study, alkyne and azido functionalities were introduced
as termination groups in both PMPCS and PBLG homopoly-
mers by utilizing R-functionalized initiators for copper-mediated
ATRP of 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene and
(19) Rao, J.; Zhang, Y.; Zhang, J.; Liu, S. Biomacromolecules 2008, 9,
586–2593.
2
20) Kros, A.; Jesse, W.; Metselaar, G. A.; Cornelissen, J. J. L. M.
(
Angew. Chem., Int. Ed. Engl. 2005, 44, 4349–4352.
21) Papadopoulos, P.; Floudas, G.; Schnell, I.; Aliferis, T.; Iatrou, H.;
Hadjichristidis, N. Biomacromolecules 2005, 6, 2352–2361.
ROP of γ-benzyl-L-glutamate N-carboxyanhydride. Block copo-
(
lymers were subsequently synthesized by the Huisgen’s 1,3-
dipolar cycloaddition (click chemistry) from homopolymers
possessing azide and alkyne functionalities. The click coupling
reaction was proven to be facile and efficient based on GPC,
NMR, and FTIR analyses. A hexagon in lamella structure was
proposed based on the 1D WAXD, 2D WAXD, and TEM
analyses for BCPs with fPBLG of ∼0.50. And the PMPCS blocks
were considered to be packed in a columnar nematic phase, while
PBLG segments had a tightly packed, hexagonal arrangement of
R-helices. According to the TEM observation and simulation of
the molecular lengths of the copolymers, a stacked bilayer
structure in the HL morphology was proposed to describe the
nanoscale microphase-separated structure of these copolymers.
By increasing fPBLG to ∼0.69, a microphase-separated hexagon in
cylinder morphology was observed, in which PMPCS formed the
core of the cylinders surrounded by PBLG in the ΦH phase and
both rods were packed in an interdigitated manner in their own
domains. Results from TEM observation and 2D WAXD
patterns of the copolymers indicated that the development of
the LC phases did not destroy the self-assembling structures from
microphase separation. This work also confirms that both
MJLCPs and polypeptides obtained from controlled polymeri-
zation methods are excellent rod-like building blocks to form
rod-rod BCPs with nanoscale hierarchical structures.
(22) Sanchez-Ferrer, A.; Mezzenga, R. Macromolecules 2009, 43, 1093–
1100.
(
(
23) Kong, X.; Jenekhe, S. A. Macromolecules 2004, 37, 8180–8183.
24) Zhou, Q.-F.; Li, H.-M.; Feng, X.-D. Macromolecules 1987, 20,
2
33–234.
(
25) Zhou, Q.-F.; Zhu, X.; Wen, Z. Macromolecules 1989, 22, 491–493.
(26) Xu, G.; Wu, W.; Shen, D.; Hou, J.; Zhang, S.; Xu, M.; Zhou, Q.
Polymer 1993, 34, 1818–1822.
(27) Chen, X.-F.; Shen, Z.; Wan, X.-H.; Fan, X.-H.; Chen, E.-Q.; Ma,
Y.; Zhou, Q.-F. Chem. Soc. Rev. 2010, DOI:10.1039/b814540g.
(
28) Li, C. Y.; Tenneti, K. K.; Zhang, D.; Zhang, H.; Wan, X.; Chen,
E.-Q.; Zhou, Q.-F.; Carlos, A.-O.; Igos, S.; Hsiao, B. S. Macro-
molecules 2004, 37, 2854–2860.
(
29) Tenneti, K. K.; Chen, X.; Li, C. Y.; Tu, Y.; Wan, X.; Zhou, Q.-F.;
Sics, I.; Hsiao, B. S. J. Am. Chem. Soc. 2005, 127, 15481–15490.
(30) Tu, Y.; Wan, X.; Zhang, D.; Zhou, Q.; Wu, C. J. Am. Chem. Soc.
2000, 122, 10201–10205.
(
(
(
31) Xie, H.-L.; Liu, Y.-X.; Zhong, G.-Q.; Zhang, H.-L.; Chen, E.-Q.;
Zhou, Q.-F. Macromolecules 2009, 42, 8774–8780.
32) Zhang, J.; Cao, H.; Wan, X.; Zhou, Q. Langmuir 2006, 22, 6587–
6
33) Lecommandoux, S.; Achard, M.-F.; Langenwalter, J. F.; Klok,
592.
H.-A. Macromolecules 2001, 34, 9100–9111.
(34) Lee, H.-F.; Sheu, H.-S.; Jeng, U. S.; Huang, C.-F.; Chang, F.-C.
Macromolecules 2005, 38, 6551–6558.
35) Babin, J.; Taton, D.; Brinkmann, M.; Lecommandoux, S. Macro-
molecules 2008, 41, 1384–1392.
36) Ho, C.-C.; Lee, Y.-H.; Dai, C.-A.; Segalman, R. A.; Su, W.-F.
Macromolecules 2009, 42, 4208–4219.
(
(
(
(
(
Acknowledgment. This research was supported by the
National Natural Science Foundation of China (Grant Nos.:
37) Li, C.; Ge, Z.; Fang, J.; Liu, S. Macromolecules 2009, 42, 2916–
20634010 and 20874003).
2
924.
38) Agut, W.; Taton, D.; Lecommandoux, S. Macromolecules 2007, 40,
653–5661.
5
Supporting Information Available: Text discussing and
39) Zhang, D.; Liu, Y.-X.; Wan, X.-H.; Zhou, Q.-F. Macromolecules
1999, 32, 5183–5185.
figure showing the FTIR spectra of the azido-PBLG19 homo-
polymer and PMPCS-b-PBLG BCPs. This material is available
free of charge via the Internet at http://pubs.acs.org.
(40) Poch ꢀe , D. S.; Moore, M. J.; Bowles, J. L. Synth. Commun. 1999, 29,
843–854.
(
(
41) Pyzuk, W. Macromolecules 1980, 13, 153–157.
42) Ye, C.; Zhang, H.-L.; Huang, Y.; Chen, E.-Q.; Lu, Y.; Shen, D.;
Wan, X.-H.; Shen, Z.; Cheng, S. Z. D.; Zhou, Q.-F. Macromole-
cules 2004, 37, 7188–7196.
References and Notes
(
(
1) Bates, F. S. Science 1991, 251, 898–905.
2) Fredrickson, G. H.; Bates, F. S. Annu. Rev. Mater. Sci. 1996, 26,
(43) Laurent, B. A.; Grayson, S. M. J. Am. Chem. Soc. 2006, 128, 4238–
501–550.
4239.